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Optimization of the time response of Gas Electron
Multiplier detectors

Jan Eysermans

Supervisor: Michael Tytgat

Abstract—The recently developed Gas Electron Mul-
tiplier (GEM) is a promising gaseous particle detector
which is proposed for the upgrade of the Compact Muon
Solenoid (CMS) at the CERN Large Hadron Collider. Due
to its excellent rate capabilities, radiation resistance and
the capability to operate in high magnetic fields, it can cope
with the expected high radiation environment in the CMS
forward region during the high luminosity phase of the
collider. In this paper, the time response of GEM detectors
is studied using simulations. A method is developed to
compare the timing properties of different gas mixtures
and is applied to different GEM configurations.

Index Terms—GEM, time resolution, Garfield++, CMS

I. INTRODUCTION

As a member of the Micro-Pattern Gas Detector
(MPGD) family, the Gas Electron Multiplier (GEM) is
the latest development in this category. It can cope with
high particle rates up to several tens of kHz/cm2, an
excellent spatial resolution in the order of 100 µm can
be obtained together with a time resolution of 5 ns.
Because of its radiation resistance and the capability to
operate in high magnetic fields, the GEM was proposed
for the upgrade of the muon system in the Compact
Muon Solenoid (CMS), one of the four main experiments
at the CERN Large Hadron Collider (LHC) [1]. The
upgrade will be performed during the Long Shutdown
2 (LS2) in 2018–2019 and comprises the installation
of new detectors in the high η-region. Due to the LHC
luminosity upgrade during LS2, high particle fluxes are
expected in this high η-region and GEM detectors were
proposed for the upgrade installation.

In this paper, the time characteristics of GEM detec-
tors is investigated through simulations. The purpose is
to investigate and optimize the time resolution, prefer-
ably without greenhouse gases. After introducing the
GEM detector, we report general simulation results on a
single GEM with a standard gas mixture of Ar–CO2. Af-
terwards, the timing characteristics are investigated and
the uncertainties are explained leading to the definition
of the time resolution. From this discussion, an algorithm
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Fig. 1. Cross section of a single GEM detector with readout strips. An
incident muon ionizes the gas in the drift region producing primary
electrons which drift to the GEM holes.

is developed to search for an optimal gas mixture and
the optimization of the GEM voltages and dimensions.
This method will be applied on different gas mixtures
and GEM configurations.

Several programs were used to simulate the GEM de-
tector. ANSYS Inc. was used to calculate the electrostatic
field (potential) and to define the GEM geometry. The
solution can be imported in Garfield++, which simulates
the primary ionization, charge transport and signal cre-
ation. This software package combines different stan-
dalone programs such as HEED and Magboltz for the
simulation of the primary ionization and charge transport
respectively. Finally, ROOT was used to analyze the
results. To work efficiently with these programs, a local
simulation environment was set up which acts as an
interface between the different software packages.

II. THE GAS ELECTRON MULTIPLIER

The GEM detector was developed by F. Sauli in 1997
at CERN [2]. A cross sectional diagram of a single GEM
is shown in Fig. 1. A GEM foil is located between two
parallel plates, the cathode and the anode respectively.
The volume in between is filled with gas. The upper
volume is called the drift region and its thickness hD
is typically a few mm. The lower volume, the induction
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Fig. 2. Cross section of the GEM foil with holes and 5 µm coated
electrodes (in black). Typical dimensions are P = 140 µm, K = 50
µm, RIM = 70 µm, D = 70 µm and d = 50 µm.

region has a thickness hI which is typically one or two
mm. The GEM foil, the characteristic element of this
type of detector, is made of a thin insulating polymer
(kapton) coated with copper on both sides. Circular holes
are perforated in the foil with a density of 50 to 100
holes mm−2. The cross section of such a foil is shown
in Fig. 2 and the common dimensions are listed in
the caption. The holes are conically shaped due to the
manufacturing process. A high voltage is applied on the
anode, cathode and both GEM foil electrodes resulting
in a strong electric field up to 100 kV/cm in the the holes
due to its small thickness. The electric field in the drift
and induction region is typically 3–8 kV/cm.

When a charged particle passes through the detector,
the gas becomes ionized in the vicinity of its path in
the drift region. The generated primary and secondary
electrons drift towards the GEM holes according to
the electric field lines where an avalanche process will
develop due to the high electric field. The avalanche elec-
trons drift towards the anode and a signal will be induced
during their drift time. The hole can be regarded as a
single amplification channel with a gain depending on
the applied GEM voltage and the gas mixture. Because
some field lines in the hole terminates on the kapton or
on the GEM foil electrodes, it is possible that electrons
generated in the avalanche will be trapped in the kapton
layer or captured on the GEM foil electrodes. As a result,
the gain will be lower and the effective gain is defined
as a fraction of the total gas gain G, i.e. Geff = ξG.

The gain can be increased by inserting multiple GEM
foils in the gas volume. For n GEM foils installed,
n GEM potentials must be defined as well as n − 1
intermediate potentials between the GEM foils. These
regions between the foils are called the transfer regions.
If equal voltages are applied over the GEM foils and the
drift, transfer and induction voltages are approximately
equal, the gain can be calculated in first order with a
power law: Gtot = Gn, with G the (effective) gain of
one GEM layer and n the amount of layers installed.

III. SINGLE GEM SIMULATIONS

A single GEM detector is used to discuss general
simulation results. The dimensions are listed in Table I.
A gas mixture of Ar–CO2 is used with a composition of
75–25% at standard temperature and pressure (STP, i.e.
p = 1 atm and T = 293.15 K). Muons with an energy of
100 GeV are perpendicularly incident on the detector. In
order to increase the statistics, the simulation has been
repeated over 100 iterations.

TABLE I
SINGLE GEM DIMENSIONS AND ELECTROSTATICS.

hT 2 mm d 55 µm
hI 1 mm D 85 µm
P 140 µm RIM 85 µm
K 50 µm Metal 5 µm
Vdrift 270 V Edrift 1.35 kV/cm
Vinduct 400 V Einduct 4 kV/cm
VGEM 460 V EGEM 92 kV/cm

A. Primary ionization

From the theory of primary ionization, the amount of
clusters over a track length L is described by a Poisson
distribution with mean L/λ. The parameter λ−1 is the
cluster density, i.e. the amount of clusters per unit length,
and depends on the gas mixture, the charged particle and
its energy. For Ar–CO2 (75–25), the cluster density is
equal to 37.78 cm−1, yielding a mean amount of clusters
of 7.556. The simulated cluster distribution is shown in
Fig. 3 (top) and is fitted to a Poisson distribution. A
mean of 7.66 is observed which is in close agreement
with the calculated value. To increase the efficiency and
optimize the time resolution, the cluster density must be
as high as possible (see section IV).

B. Townsend avalanche and gain

In Fig. 3 (bottom), the avalanche size for each primary
electron is plotted and fitted to a Polya distribution which
describes the gain fluctuations in avalanche processes.
The mean µ of this distribution is equal to the gas
gain G and depends on the GEM voltage VGEM and
the gas mixture via the Townsend coefficient α. The
effective gain can be calculated as the fraction ξ of
electrons which drift towards the anode and is equal to
ξ = 0.40484. Hence, the effective gain is calculated as
Geff = ξG = 69.31.

The spread of the electrons on the anode is a measure
for the spatial resolution and an RMS of 120 µm is found
in both directions in the transverse plane. This proves the
excellent spatial resolution of GEM detectors.
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Fig. 3. Garfield++ simulations results: total cluster size fitted to
a Poisson distribution (top) and avalanche size per primary electron
fitted to a Polya distribution describing the gain fluctuations (bottom).

C. Induced signal

According to the Shockley-Ramo theorem, a (con-
stant) signal will be induced on the anode during the time
the swarm of electrons created in the avalanche drift from
the GEM hole to the anode. The signal is proportional to
the total charge Q, the electric field and the drift velocity
in the induction region. In order to obtain fast pulses, the
drift velocity vd(| ~E|) must be chosen as high as possible.

In Fig. 4 (top), the induced charge on the anode from a
single primary electron is shown, which was released in
the half of the drift region. During the drift time towards
the GEM hole, almost no signal is induced because the
charge is masked by the top GEM foil electrode. Hence,
the time offset can be calculated as:

∆t1 =
ddrift/2

vd,drift
=

0.1 cm
45 µm · ns−1 = 22.22 ns, (1)

with 45 µm · ns−1 the drift velocity at the drift region
electric field (i.e. 1.35 kV/cm). Within an error of 3 ns,
due to the non-uniform electric field and drift velocity,
this value is in agreement the time offset of 18–19 ns,
as shown in Fig. 4 (top). The duration of the pulse is
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Fig. 4. Garfield++ simulations results : induced signal from a
single primary electron (top) and random induced signal from a
perpendicularly incident muon (bottom).

equal to the drift time of the swarm of electrons in the
induction region:

∆t2 =
dinduct

vd,induct
=

0.1 cm
70 µm · ns−1 = 14.29 ns, (2)

with 70 µm · ns−1 the drift velocity at an electric field
of 4 kV/cm, i.e. the electric field in the induction region.
This is in close agreement with a duration of 15 ns, as
can be seen from Fig. 4 (top). We conclude that the
raw induced signal on the anode from a single primary
electron is block shaped and can be described in first
order by the kinematics of the charges in the drift and
induction region.

When a charged particle passes through the drift
region, multiple primary and secondary electrons are
almost instantaneously created in the drift region, each
triggering an avalanche and inducing a signal on the
anode. The total induced charge is a superposition in
time of the individual induced charges. An example of
such superposition is shown in Fig. 4 (bottom), where
the induced signal of a 100 GeV muon is shown.
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IV. TIME RESOLUTION

The raw signal pulse is processed by the electronics
to amplify and deform the signal to a desired shape (e.g.
Gaussian). Afterwards, a discriminator is used which
imposes a threshold on the signal. The time when the
signal exceeds the threshold value is registered and can
be used as a reference to determine the time when
the charged particle passed through the detector. The
value of the discriminator depends on the electronics and
must be as low as possible in order to obtain accurate
time measurements. Due to the stochastic nature of the
processes involved in a gaseous detector, the signals
and the time measurement are subjected to uncertainties.
Indeed, primary ionization fluctuations, gain variations,
diffusion processes and electronic noise will lead to an
uncertainty of the time coordinate measurement. The
combined effects result in a spread of the time mea-
surement which is defined as the time resolution.

The dominant effect on the time resolution is the time
jitter derived from primary ionization. It is clear that the
last cluster in the drift region, close to the GEM foil,
will induce the first signal on the readout electrode. As
discussed before, the time when the induced signal starts
to develop is almost equal to the time needed to drift
towards the GEM hole. Because the primary ionization
is a stochastic process governed by Poisson statistics, the
position of the last cluster differs from event to event as
well as the drift time and thus the initial time of the
induced pulse. The spread of the last cluster in the z-
coordinate (perpendicular to the GEM foil) is denoted as
σIz and arises more generally from a probability density
function P (z, θ, L, λ). The distribution depends on the
charged particle, incident angle θ and the thickness L
of the drift region. Furthermore it depends on the gas
mixture through λ−1, because a higher cluster density
yields a lower spread and thus σIz decreases when
λ−1 increases. In the first instance, we can assume the
primary electrons drift towards the GEM hole with a
constant drift velocity vd. The spread of the initial time of
the induced signal σIt is equal to the spread in drift time
of the last ionization cluster. The latter can be written as
a function of σIz and vd according to:

σIt =
σIz
vd
. (3)

We will call σIt the intrinsic time resolution of the GEM
detector and it represents a value for the global time
resolution, without taking diffusion and gain variations,
attachment and the electronics into account. This quan-
tity is used in the next section to compare different gas
mixtures.
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Fig. 5. Simulated P (z, θ, L, λ) distribution for an Ar–CO2 mixture
where 105 perpendicularly muons are incident on a triple GEM with
1 mm drift region thickness.

The distribution P (z, θ, L, λ) is shown in Fig. 5 for
the Ar–CO2 (75–25) mixture, obtained by simulating 100
GeV muons on a single GEM with 1 mm drift region
thickness. If the electric field in the drift region is equal
to 1.35 kV/cm, the corresponding drift velocity is equal
to vD = 45 µm/ns and the intrinsic time resolution can
be calculated as σIt = 214.8 µm/45 µm · s−1 = 4.77 ns.

V. TIME RESOLUTION OPTIMIZATION

From the previous section and general considerations,
the following algorithm is proposed to improve the time
resolution. It comprises the selection of a suitable gas
mixture and the adjustment of the GEM voltages and/or
dimensions.

1) Select a gas mixture, preferable mixtures with a
high cluster density λ−1, high drift velocity vd,
high Townsend coefficient α and low attachment
coefficient η.

2) Calculate the gas parameters vd, α and η as a
function of the electric field with Magboltz.

3) In the electric field region of 1–10 kV/cm, find the
electric field value which maximizes drift velocity.

4) Calculate σIz with HEED and calculate the intrinsic
time resolution σIt .

5) Select a GEM geometry and determine the drift
and induction voltages needed to achieve the elec-
tric fields in the previous step.

6) Select a GEM voltage based on the value of α to
achieve an appropriate gas and effective gain.

7) Compute the electrostatic field with ANSYS and
simulate the GEM with Garfield++.

8) Extract the effective gain. Adjust the GEM voltage
VGEM if necessary when the gain is too low and
repeat the previous step.

9) Extract timing information from the induced and
convoluted pulses and compare to σIt .
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TABLE II
RESULTS OF GAS TABLES AND σI

z FOR VARIOUS GAS MIXTURES. (*) PENNING TRANSFER IS INCLUDED IN THIS SIMULATION.

Gas mixture vd,max [µm/ns] E(vd,max) [kV/cm] σI
z [µm] σI

t µm [ns] Geff VGEM [V]
Ar–CO2 75–25 75 7.0 214.8 2.90 72.73* 450
C5H12 55 4.0 74.29 1.35 19.82 800
C4H10 54 6.0 89.17 1.65 9.82 600
CO2* 90 8.0 193.6 2.15 n.a. n.a.
C4H10–C5H12 60–40 55 4.2 82.0 1.49 20.92 700
CO2–C5H12 40–60 58 8.0 100.5 1.73 34.06 650
Ar–C5H12 40–60 55 2.1 105.9 1.93 10.77 600
Xe–C5H12 40–60 51 4.1 94.88 1.86 25.39 650
Ar–C4H10 20–80 54 4.5 101.7 1.88 n.a. n.a.
Xe–C4H10 20–80 52 4.5 99.43 1.91 n.a. n.a.
CF4 145 5.0 145.3 1.00 52.91 600
C5H12–CF4 40–60 100 5.5 103.5 1.04 8.32 550
Xe–C5H12-CF4 40–20–40 90 4.1 127.8 1.42 18.92 500

This algorithm was applied to different gas mixtures.
Only the optimal gas mixtures are discussed here, and the
results are listed in Table II. For the simulations, a single
GEM was used with standard GEM foil dimensions
(see Fig. 2) and hD = hI = 1 mm. The drift and
induction voltages were adjusted as described in the
algorithm. A suitable GEM voltage was chosen based
on Townsend coefficient. The simulation was performed
with perpendicularly incident 100 GeV muons (i.e. ideal
circumstances).

In the discussion below, a distinction has been made
between greenhouse and non-greenhouse gas mixtures
because greenhouse gas mixtures are not recommended
for future usage. Non-ideal circumstances such as the
incident angle, the initial muon energy and the drift
region thickness are briefly discussed in the last section.

A. Non-greenhouse gas mixtures

Based on the cluster density, C5H12 (pentane) and
C4H10 (butane) are the best gases with cluster densi-
ties of 137 cm−1 and 111 cm−1 respectively. Intrinsic
time resolutions of 1.35 ns and 1.65 ns were obtained
respectively (see table). However, because the Townsend
coefficient of both gases is relative low, high GEM
voltages in the order of 700–900 V are needed. To reduce
the GEM voltage, other gas constituents such as Ar,
Xe or CO2 must be added to increase the value of α.
With the CO2–C5H12 (40–60) and Xe–C5H12 (40–60)
mixtures, time resolutions in the order of 1.8 ns were
obtained, with adjusted GEM voltages equal to 650–
750 V. However, Xe–C5H12 is more suitable because
the drift and induction fields must be equal to 4.1
kV/cm in contrast to 8 kV/cm for CO2–C5H12. Another
promising gas mixture is C4H10–C5H12 60–40 with an

intrinsic time resolution equal to 1.5 ns. Again, high
GEM voltages are needed to obtain a sufficient gain.
Based on the Townsend coefficient, it is expected that
the Ar/Xe–C4H10 20–80 mixtures, which have a good
time resolution in the order of 1.9 ns, could operate
with lower GEM voltages. However, these simulations
still needs to be performed.

B. Greenhouse gas mixtures

With a cluster density of 143 cm−1, C3F8 is a
promising gas with an intrinsic time resolution of 620
ps. However, the eight fluoride atoms result in a very
high attachment coefficient over the entire electric field
region, with a maximum of η = 840 cm−1. It is expected
that many electrons will be attached leading to low gain
values. Indeed, after simulating a GEM with pure C3F8,
all the electrons were attached (even after varying the
drift region voltage) and a gain of zero was obtained.
The same behavior was observed with C2F6 (λ−1 = 143
cm−1 and ηmax = 110 cm−1). Additional constituents
with Ar, Xe or CO2 were proposed and simulated, but
the attachment remained high and low gain values were
obtained.

On the other hand, CF4 is proven to be an excellent a
gas with a large drift velocity of 145 µm/ns at 5 kV/cm.
Furthermore, it has a high Townsend coefficient and a
relative low attachment in contrast to C3F8 and C2F6.
It can be used as a standalone gas yielding an intrinsic
time resolution of 1 ns. Moreover, different compositions
of CF4 with, for example, C5H12 or Xe were proposed,
yielding a time resolution in the order of 1–1.4 ns (see
table). Further research needs to be performed in order
to reduce the amount of CF4 because it is a strong
greenhouse gas.
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C. Non-ideal circumstances

The dependence of σIz on different nonidealities were
investigated through simulations. A small dependence of
σIz on the drift region thickness was observed with gases
having low cluster densities, but almost immediately
converged to a constant value when higher drift region
thicknesses were used. The dependence on the muon
energy was found to be negligible as the cluster density
λ−1 is almost constant for muons with energies above 1
GeV. The incident angle clearly influences the spread σIz
because non-perpendicularly incident muons will leave
a larger ionization track length in the drift region, which
result in a decrease of σIz . However, large incident angles
tend to spread out the primary ionization in the transverse
direction, yielding a degradation of the spatial resolution
and the charge collected on the readout strips.

VI. CONCLUSIONS AND OUTLOOK

In this paper we developed an algorithm to compare
different gas mixtures in order to optimize the time
resolution of the Gas Electron Multiplier (GEM) with
the use of simulations. After a short introduction on the
GEM detector and elementary simulations, the method
on how to extract timing information from the signal
pulses was explained and a brief review on the stochastic
processes in a gaseous detector led to the definition of

the time resolution. The stochastic nature of the primary
ionization was explained in more detail and the intrinsic
time resolution was defined. From this discussion, an
algorithm was developed to optimize the intrinsic time
resolution and was applied to different greenhouse and
non-greenhouse gas mixtures. C5H12, C4H10 and CF4

were promising gas constituents yielding intrinsic time
resolutions below 2 ns. Different compositions were
calculated in ideal circumstances and the GEM voltage
was adjusted. Afterwards, nonidealities were briefly ex-
plained.

The intrinsic time resolution does not take any elec-
tronic equipment into account, as well as gain and
diffusion variations were neglected. It is clear that the
intrinsic time resolution must be compared to experi-
mental results and the algorithm deduced in this chapter
must be verified.
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Optimalisatie van de tijdskarakteristieken van Gas
Electron Multiplier detectoren

Jan Eysermans

Mentor: Michael Tytgat

Samenvatting—De recent ontwikkelde Gas Electron
Multiplier (GEM) is een kandidaat-gasdetector voor de
upgrade van de Compact Muon Solenoid (CMS) aan de
CERN Large Hadron Collider. Uitstekende eigenschappen
zoals een hoge deeltjesflux en een hoge stralingsweer-
stand maakt de GEM-detector geschikt voor de hoge
stralingsomgeving die verwacht wordt in het voorwaartse
gebied in CMS tijdens de hoge luminositeitsfase van de
versneller. In deze paper worden de tijdskarakteristieken
van GEM-detectoren bestudeerd a.d.h.v. simulaties. Om de
tijdskarakteristieken van verschillende gassen te vergelij-
ken werd een methode ontwikkeld die zal worden toegepast
op verschillende gassen en GEM-configuraties.

Index Terms—GEM, tijdsresolutie, Garfield++, CMS

I. INTRODUCTIE

De Gas Electron Multiplier (GEM) is een recente
ontwikkeling binnen de categorie van de Micro-Pattern
Gas Detectors (MPGD). De GEM-detector kan func-
tioneren in een hoge deeltjesflux tot enkele tientallen
kHz/cm2, een uitstekende plaatsresolutie in de orde van
100 µ kan behaald worden alsook een tijdsresolutie
van 5 ns. Wegens zijn grote stralingsweerstand en de
mogelijkheid tot operatie in hoog magnetische velden
werd de GEM-detector voorgedragen als kandidaat voor
de upgrade van de muondetectoren in de Compact Muon
Solenoid (CMS), één van de grote experimenten aan
de CERN Large Hadron Collider (LHC) [1]. Deze
upgrade zal plaatsvinden tijdens de Long Shutdown 2
(LS2) in 2018–2019 en bevat de installatie van nieuwe
detectoren in het voorwaartse gebied. Wegens de LHC-
luminositeitsupgrade tijdens LS2 zal een hoge deeltjes-
flux verwacht worden in dit gebied en GEM-detectoren
werden voorgesteld voor de installatie tijdens de upgrade.

In deze paper worden de tijdskarakteristieken van de
GEM-detectoren bestudeerd met simulaties. Het doel is
om de oorzaak van de tijdskarakteristieken te onder-
zoeken en deze te optimaliseren, bij voorkeur zonder
het gebruik van broeikasgassen. Eerst wordt de GEM-
detector kort beschreven en elementaire resultaten van
de simulaties worden besproken. Vervolgens worden de
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Figuur 1. Schematische doorsnede van een single GEM met readout
strips. Een invallend muon ioniseert het gas in het driftgebied met de
vorming van primaire electronen die driften naar de GEM-gaten.

onzekerheden op deze tijdskarakteristieken onderzocht,
wat automatisch zal leiden tot de definitie van de tijds-
resolutie. Uit deze discussie zal een algoritme worden
afgeleid om te zoeken naar geschikte gasmengsels en het
optimaliseren van de aangelegde GEM-spanningen en
dimensies. Dit wordt verder toegepast op enkele gassen
en GEM-configuraties.

Verschillende simulatieprogramma’s werden gebruikt
waaronder ANSYS Inc. voor het definiëren van de GEM-
geometrie en het berekenen van het elektrisch veld.
Vervolgens werd Garfield++ gebruikt voor de simulatie
van de primaire ionisatie, transport van ladingen en de si-
mulatie van het geı̈nduceerde signaal. Garfield++ bestaat
uit verschillende programma’s zoals HEED en Magboltz
voor het berekenen van de individuele processen. Verder
werd ROOT gebruikt voor de analyse van de data. Een
lokale simulatieomgeving werd opgezet voor het efficiënt
simuleren van verschillende GEM-configuraties.

II. DE GAS ELECTRON MULTIPLIER

De GEM-detector is uitgevonden door F. Sauli in 1997
in CERN [2]. Een schematische doorsnede van een single
GEM is weergegeven in Fig. 1. Tussen twee parallele
platen is een GEM-folie gespannen en het geheel wordt
opgevuld met een gasmengsel. Het bovenste gedeelte is
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Figuur 2. Schematische doorsnede van een GEM-folie met gaten en
5 µm gecoate electroden. Typische afmetingen zijn P = 140 µm,
K = 50 µm, RIM = 70 µm, D = 70 µm en d = 50 µm.

het driftgebied en heeft een typische dikte hD van enkele
millimeter terwijl het inductiegebied onderaan een typi-
sche dikte hI heeft van één of twee millimeter. De GEM-
folie bestaat uit een dunne isolerende laag van polymeer
(kapton) die gecoat is met koper langs beide kanten. In
de folie zijn dubbelconische gaten geperforeerd met een
densiteit van 50 tot 100 gaten mm−2. Een schematische
doorsnede van de folie is weergegeven in Fig. 2 en
de typische afmetingen zijn gegeven in het bijschrift.
Een hoge spanning (VC en VD) wordt aangelegd over
beide platen alsook over de elektroden van de GEM-
folie (VGEM). Omdat de folie zeer dun is onstaan er
sterke elektrische velden in de gaten tot 100 kV/cm. Het
elektrische veld in het drift- en inductiegebied is typisch
rond 3–8 kV/cm.

Wanneer een geladen deeltje door de detector passeert
zal het gas worden geı̈oniseerd in de omgeving van
zijn traject. De gegenereerde primaire en secundaire
elektronen driften naar de GEM-gaten en een lawine zal
zich ontwikkelen wegens de sterke elektrische velden
in de gaten. De vrijgemaakte elektronen driften naar
de anode en zullen een signaal induceren gedurende
hun drifttijd. De gaten worden beschouwd als verster-
kingskanalen met een versterkingsfactor afhankelijk van
de aangelegde spanning en het gebruikte gas. Omdat
sommige veldlijnen in de gaten eindigen op de GEM-
folie is het mogelijk dat elektronen vanuit de lawine
gevangen geraken in de kapton laag of op de GEM-folie
elektroden. De totale versterking zal dan lager zijn en
de effectieve versterking wordt dan gedefinieerd als een
fractie van de totale versterking G, i.e. Geff = ξG.

De versterking kan verhoogd worden door het toevoe-
gen van meerdere GEM-folies in het gas volume. Voor
n folies aanwezig moeten n spanningen alsook n − 1
tussenliggende spanningen opgelegd worden. De gebie-
den tussen de folies noemt men de transfergebieden.
Bij gelijke spanningen over elke laag en over de GEM-
elektroden kan de versterking bij benadering berekend
worden met een machtswet: Gtot = Gn, met G de
(effectieve) versterking van één GEM-laag.

III. SINGLE GEM SIMULATIES

Elementaire simulatie resultaten worden besproken
met de simulatie van een single GEM met dimensies
gegeven in Tabel I. Een standaard gasmengsel van Ar–
CO2 (75–25) werd gebruikt bij standaard temperatuur en
druk (STP, i.e. p = 1 atm and T = 293.15 K). Muonen
met een energie van 100 GeV werden gesimuleerd
loodrecht invallend op de GEM detector. Om voldoende
nauwkeurige resultaten te bekomen werd de simulatie
100 keer herhaald.

Tabel I
SINGLE GEM DIMENSIES EN SPANNINGEN.

hT 2 mm d 55 µm
hI 1 mm D 85 µm
P 140 µm RIM 85 µm
K 50 µm Metal 5 µm
Vdrift 270 V Edrift 1.35 kV/cm
Vinduct 400 V Einduct 4 kV/cm
VGEM 460 V EGEM 92 kV/cm

A. Primaire ionisatie

Het aantal primaire ionizaties (clusters) over een
lengte L is beschreven met de Poisson-statistiek met een
gemiddelde waarde L/λ. De parameter λ−1 is de cluster-
densiteit, i.e. het aantal clusters per eenheidslengte, af-
hankelijk van het gas, het geladen deeltje en zijn energie.
Voor Ar–CO2 (75–25) is de clusterdensiteit gelijk aan
37.78 cm−1 zodat een gemiddeld aantal clusters van
7.556 behaald wordt. In Fig. 3 (boven) is het aantal clus-
ters getoond in een histogram. Een gemiddelde waarde
van 7.66 werd bekomen wat in goede overeenstemming
is met de berekende waarde. Om de efficiëntie en de
tijdsresolutie te optimaliseren moet de clusterdensiteit zo
hoog mogelijk zijn (zie IV).

B. Townsend lawine en versterkingsfactor

De lawinegrootte voor per primair elektron is weerge-
geven in Fig. 3 (onder), waar de curve gefit is aan een
Polya-distributie dat deze lawinefluctuaties beschrijft.
Een gemiddelde versterking van G = 171.2 werd be-
haald die afhangt van de GEM-spanning VGEM en het
gasmengsel via de Townsend-coëfficiënt α. De effec-
tieve versterking kan berekened worden uit de fractie
ξ van elektronen die driften naar de anode en is gelijk
aan 0.40484. Zo wordt een effectieve versterking van
Geff = ξG = 69.31 behaald.

De spreiding van de elektronen op de anode is een
maat voor de spatiale resolutie en een RMS van 120 µm
werd behaald in beide transversale richtingen.
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Figuur 3. Garfield++ simulatie resultaten: totale clustergrootte gefit
aan een Poisson-distributie (boven) en de lawinegrootte per primair
elektron, gefit aan een Polya-distributie die de versterkingsfluctuaties
beschrijft (onder).

C. Geı̈nduceerd signaal

Als gevolg van het Shockley-Ramo-theorema wordt
een signaal geı̈nduceerd op de anode vanaf dat de lawine-
elektronen gecreëerd zijn en driften naar de anode. Het
signaal is evenredig met de totale lading Q, de elektri-
sche veldsterkte en de driftsnelheid in het inductiegebied.
Om snelle pulsen te bekomen moet de driftsnelheid
vd(| ~E|) zo hoog mogelijk gekozen worden.

Fig. 4 (boven) toont de geı̈nduceerde lading op de
anode afkomstig van één primair elektron, die gesimu-
leerd werd in de helft van het driftgebied. Tijdens de
drift naar het GEM-gat werd geen signaal geı̈nduceerd
omdat de lading afgeschermd werd door de top GEM-
folie elektrode. De tijdsoffset kan dan berekend worden
als:

∆t1 =
ddrift/2

vd,drift
=

0.1 cm
45 µm · ns−1 = 22.22 ns, (1)

waar 45 µm · ns−1 de driftsnelheid is in het driftgebield
(E = 1.35 kV/cm). Binnen een foutenmarge van 3 ns
door het niet-uniforme elektrische veld en driftsnelheid,
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Figuur 4. Garfield++ simulatie resultaten: geı̈nduceerd signaal van
een primair elektron (boven) en geı̈nduceerd signaal van een lood-
recht invallend muon (onder).

is deze berekende waarde in overeenstemming met de
tijdsoffset van 18–19 ns zoals te zien op Fig. 4 (boven).
De tijdsduur van de puls is gelijk aan de drifttijd van de
lawine-elektronen in het inductiegebied:

∆t2 =
dinduct

vd,induct
=

0.1 cm
70 µm · ns−1 = 14.29 ns, (2)

met 70 µm · ns−1 de driftsnelheid in het inductiegebied
(E = 4 kV/cm). Deze waarde komt overeen met de
tijdsduur van 15 ns zoals kan afgeleid worden uit Fig.
4 (boven). Uit deze analyse concludeert men dat het
ruwe geı̈nduceerde signaal op de anode, afkomstig van
een primair elektron, blokvormig is. Het kan beschreven
worden door de kinematica van de ladingen in de drift-
en inductiegebieden bij constante velden.

Wanneer een geladen deeltje doorheen het driftgebied
passeert zullen er verschillende primaire en secundaire
elektronen vrijgemaakt worden in het driftgebied, elk
leidend tot een lawine en een geı̈nduceerd signaal op
de anode. De totale geı̈nduceerde lading is dan een
superpositie van de individuele geı̈nduceerde ladingen.
Als voorbeeld wordt in Fig. 4 (onder) een geı̈nduceerd
signaal getoond afkomstig van een 100 GeV muon.
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IV. TIJDSRESOLUTIE

De elektronica zal het ruwe signaal versterken en ver-
vormen tot een gewenste vorm (e.g. Gauss). Vervolgens
wordt een discriminator gebruikt die een drempel op
het signaal legt. De tijd wanneer het signaal de drem-
pelwaarde overschrijdt wordt geregistreerd. Deze wordt
gebruikt als referentie om de tijd te bepalen wanneer
een geladen deeltje doorheen de detector gepasseerd
is. De drempelwaarde hangt af van de elektronica en
moet zo laag mogelijk zijn om nauwkeurige tijdsme-
tingen te behalen. Door de stochastische processen in
de gasdector zullen de signalen en dus de tijdsmetingen
onderworpen worden aan onzekerheden. Fluctuaties bij
de primaire ionisatie, versterkingsvariaties, diffusie en
elektronische ruis leiden allemaal tot een onzekerheid
op de tijdsmeting. Het gecombineerde effect leidt dan
tot een spreiding in de tijdsmetingen van verschillende
events wat gedefiniëerd wordt als de tijdsresolutie.

Het dominante effect op de tijdsresolutie is de tijdsjit-
ter veroorzaakt door primaire ionisatie. Het is duidelijk
dat de laatste cluster gecreëerd, voor de GEM-folie, het
eerste signaal zal induceren op de anode. Zoals beschre-
ven in de vorige paragraaf zal dit signaal starten wanneer
de primaire elektronen naar het GEM-gat gedrift zijn.
Omdat de primaire ionisatie een stochastisch proces is,
beschreven door de Poisson-statistiek, zal de positie van
de laatste cluster verschillend zijn van event tot event,
alsook de drittijd en dus de tijd wanneer het signaal
geı̈nduceerd wordt. De spreiding van de laatste cluster
volgens de z-richting (loodrecht op de GEM-folie) is
genoteerd als σIz en heeft een onderliggende distributie
genoteerd als P (z, θ, L, λ). Deze distributie hangt af van
het geladen deeltje, de invalshoek θ en de dikte L van
het driftgebied. Verder is ook het gasmengsel afhankelijk
via λ−1 omdat een hogere clusterdensiteit zal leiden tot
een kleinere spreiding en dus zal σIz afnemen als λ−1

toeneemt. In eerste instantie kan men veronderstellen dat
de primaire elektronen naar de GEM-gaten driften met
constante driftsnelheid vd. De spreiding σIt in de tijd
van het geı̈nduceerde signaal zal dan gelijk zijn aan de
spreiding in de tijd van de laatste cluster. Deze laatste
kan beschreven worden in functie van σIz en vd:

σIt =
σIz
vd
. (3)

σIt wordt gedefinieerd als de intrinsieke tijdsresolutie
van een GEM-detector en geeft een goede eerste orde
benadering van de tijdsresolutie, zonder diffusie, verster-
kingsvariaties, attachment en elektronica. In de volgende
paragraaf zal deze gebruikt worden om verschillende
gassen met elkaar te vergelijken.
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Figuur 5. Gesimuleerde P (z, θ, L, λ) distributie voor het Ar–CO2

(75–25) gasmengsel, bekomen door 105 loodrecht invallende muonen
te simuleren op een single GEM met 1 mm driftgebied.

De P (z, θ, L, λ) distributie is weergegeven in Fig. 5
voor Ar–CO2 (75–25), bekomen door simulatie van 100
GeV muonen met L = hI = 1 mm. Als het elektrische
veld in het driftgebied gelijk is aan 1.35 kV/cm, dan is
de corresponderende driftsnelheid gelijk aan vD = 45
µm/ns en de intrinsieke tijdsresolutie wordt dan gegeven
door σIt = 214.8 µm/45 µm · s−1 = 4.77 ns.

V. OPTIMALISATIE TIJDSRESOLUTIE

Uit de voorgaande discussie en algemene beschou-
wingen werd het volgende algoritme voorgesteld om te
tijdsresolutie te optimaliseren. Het bevat de selectie van
een geschikt gasmengsel en het aanpassen van de GEM-
spanningen en/of afmetingen.

1) Selecteer een gasmengsel, bij voorkeur met
hoge clusterdensiteit λ−1, hoge driftsnelheid vd,
hoge Townsend-coëfficiënt α en lage attachment
coëfficiënt η.

2) Bereken de gaseigenschappen zoals vd, α en η in
functie van het elektrische veld met Magboltz.

3) Zoek het elektrische veld dat de driftsnelheid
maximaliseert in gebied van 1–10 kV/cm.

4) Bereken σIz met HEED en bereken de intrinsieke
tijdsresolutie σIt .

5) Selecteer een GEM-geometrie en bepaal de drift-
en inductiespanningen nodig om het elektrische
veld in de vorige stap te bekomen.

6) Selecteer een GEM-spanning gebaseerd op α om
een geschikte versterking te bekomen.

7) Bereken het elektrostatisch veld met ANSYS en
simuleer de GEM met Garfield++.

8) Bepaal de effectieve versterking en verander de
GEM spanning VGEM indien de versterking te laag
is en herhaal de vorige stap.

9) Bepaal de tijdskarakteristieken van de
geı̈nduceerde puls en vergelijk met σIt .
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Tabel II
RESUTATEN VAN DE GASPARAMETERS EN σI

z VOOR VERSCHILLENDE GASMENGSELS. (*) PENNING TRANSFER IS TOEGEPAST.

Gasmengsel vd,max [µm/ns] E(vd,max) [kV/cm] σI
z [µm] σI

t µm [ns] Geff VGEM [V]
Ar–CO2 75–25 75 7.0 214.8 2.90 72.73* 450
C5H12 55 4.0 74.29 1.35 19.82 800
C4H10 54 6.0 89.17 1.65 9.82 600
CO2* 90 8.0 193.6 2.15 n.a. n.a.
C4H10–C5H12 60–40 55 4.2 82.0 1.49 20.92 700
CO2–C5H12 40–60 58 8.0 100.5 1.73 34.06 650
Ar–C5H12 40–60 55 2.1 105.9 1.93 10.77 600
Xe–C5H12 40–60 51 4.1 94.88 1.86 25.39 650
Ar–C4H10 20–80 54 4.5 101.7 1.88 n.a. n.a.
Xe–C4H10 20–80 52 4.5 99.43 1.91 n.a. n.a.
CF4 145 5.0 145.3 1.00 52.91 600
C5H12–CF4 40–60 100 5.5 103.5 1.04 8.32 550
Xe–C5H12-CF4 40–20–40 90 4.1 127.8 1.42 18.92 500

Het voorgaande algoritme werd toegepast op verschil-
lende gasmengsels waarvan enkel de optimale gasmeng-
sels hier worden besproken (zie Tabel II). De simulaties
werden uitgevoerd met een single GEM met standaard
GEM-folie afmetingen (zie Fig. 2) en met hD = hI = 1
mm. De drift- en inductiespanningen werden aangepast
zoals besproken in het algoritme. Verder werd de GEM-
spanning VGEM gebaseerd op de Townsend-coëfficiënt.
De simulatie werd uitgevoerd met loodrecht invallende
100 GeV muonen (i.e. ideale omstandigheden).

In de onderstaande discussie is een onderscheid ge-
maakt tussen niet-broeikas- en broeikasgassen omdat
deze laatste niet aanbevolen zijn voor toekomstig ge-
bruik. Niet-ideale omstandigheden zoals de invalshoek,
de initiële muonenergie en de dikte van het driftgebied
worden kort besproken in de laatste paragraaf.

A. Niet-broeikasgasmengsels

Baserend op de clusterdensiteit zijn C5H12 (pentaan)
en C4H10 (butaan) de beste gassen met waarden van
respectievelijk 137 cm−1 and 111 cm−1. De intrinsieke
tijdsresolutie is 1.35 ns en 1.65 ns respectievelijk (zie
tabel). Omdat de Townsend-coëfficiënt van beide gassen
laag is, zijn hoge waarden voor VGEM nodig in de
orde van 700–900 V. Om deze spanningen te reduceren
worden er andere constituenten zoals Ar, Xe of CO2

toegevoegd om de waard van α te doen toenemen. Met
de CO2–C5H12 (40–60) en Xe–C5H12 (40–60) mengsels
werden tijdsresoluties in de orde van 1.8 ns behaald, met
GEM spanningen in de orde van 650–750 V. Xe–C5H12

is echter meer geschikt omdat de drift- en inductievelden
moeten gelijk zijn aan 4.1 kV/cm in vergelijking met 8
kV/cm voor CO2–C5H12. Een ander veelbelovend gas-
mengsel is C4H10–C5H12 60–40 met een tijdsresolutie

van 1.5 ns, hoewel ook hier hoge GEM-spanningen
nodig zijn om een geschikte versterking te bekomen.
Gebaseerd op α zijn de Ar/Xe–C4H10 20–80 gunstig met
een tijdsresolutie van ongeveer 1.9 ns. Verwacht is dat
deze kunnen opereren onder VGEM spanningen maar deze
simulaties moeten nog uitgevoerd worden.

B. Broeikasgasmengsels

Met een clusterdensiteit van 143 cm−1 is C3F8 een
veelbelovend gas met een intrinsieke tijdsresolutie van
620 ps. Door zijn acht fluoride atomen is de attachment-
coëfficiënt zeer hoog over een groot bereik van het
elektrische veld, met een maximum van η = 840 cm−1.
Er wordt dus verwacht dat veel elektronen verloren gaan,
resulterend in een lage versterking. Na de simulaties van
een single GEM met zuiver C3F8 werden inderdaad alle
electronen attached en een versterking van nul werd be-
komen. Dezelfde resultaten werden bekomen met C2F6

(λ−1 = 143 cm−1 en ηmax = 110 cm−1). Toegevoegde
constituenten zoals Ar, Xe of CO2 werden voorgesteld en
gesimuleerd, maar de attachment-coëfficiënt bleef hoog
en lage versterkingen werden behaald.

Anderzijds blijkt CF4 een uitstekend gas te zijn met
een hoge driftsnelheid van 145 µm/ns bij 5 kV/cm.
Verder heeft deze een hoge Townsend-coëfficiënt en een
relatief lage attachment-coëfficiënt in vergelijking met
C3F8 en C2F6. Het kan gebruikt worden als zuiver gas
resulterend in een tijdsresolutie van 1 ns. Verder werden
verschillende composities berekend met o.a. C5H12 of
Xe, leidend tot een tijdsresolutie in de orde van 1–1.4 ns
(zie tabel). Verder onderzoek is nodig om de hoeveelheid
CF4 te reduceren omdat het een sterk broeikasgas is.
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C. Niet-idealiteiten

De afhankelijkheid van σIz op verschillende niet-
idealiteiten werd onderzocht via simulaties. Een kleine
afhankelijkheid van σIz op de dikte van het driftgebied
werd geobserveerd met gassen die een lage cluster-
densiteit hebben, maar convergeert vrijwel onmiddelijk
naar een constante waarde bij toenemende dikte van het
driftgebied. De afhankelijkheid van de energie van het
muon is verwaarloosbaar omdat de clusterdensiteit λ−1

vrijwel constant is voor muonen met een energie groter
dan 1 GeV. De invalshoek heeft duidelijk een invloed op
de spreiding σIz omdat niet-loodrecht invallende muonen
een langere ionisatie track achterlaten in het driftgebied,
resulterend in een afname van σIz . Grotere invalshoe-
ken zullen echter zorgen voor een grotere transversale
spreiding van de primaire elektronen, resulterend in
een degradatie van de spatiale resolutie en de lading
gecollecteerd op de readout strips.

VI. CONCLUSIES EN VOORUITZICHTEN

In deze paper werd een algoritme beschreven om
verschillende gasmengsels te vergelijken die de tijds-
resolutie van de Gas Electron Multipier (GEM) kan
optimaliseren, gebruikmakende van simulaties. Na een
korte introductie van de GEM-detector en resultaten
van elementaire simulaties, werd een methode uitgelegd
om de tijdsinformatie af te leiden uit de geı̈nduceerde

signaalpulsen. Een korte beschrijving van de stochas-
tische processen in een gasdetector leidde automatisch
tot de definitie van de tijdsresolutie. De stochastische
effecten van de primaire ionisatie werd besproken en
een intrinsieke tijdsresolutie werd gedefinieerd. Uit deze
discussie werd een algoritme afgeleid om de intrinsieke
tijdsresolutie te optimaliseren. Dat werd toegepast op
verschillende gasmengsels, onderverdeeld in broeikas-
en niet-broeikasgassen. C5H12, C4H10 en CF4 werden
naar voor geschoven als kandidaat-gassen met een intrin-
sieke tijdsresolutie onder 2 ns. Verschillende composities
werden berekend in ideale omstandigheden en de GEM-
spanningen werden aangepast. Nadien werden enkele
niet-idealiteiten kort besproken.

De intrinsieke tijdsresolutie is onafhankelijk van de
gebruikte elektronica, diffusie-effecten en versterkings-
variaties. Het is dus nodig om de de intrinsieke tijds-
resolutie te toetsen aan experimentele waarden en het
gebruikte algoritme te verifiëren.
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CMS Compact Muon Solenoid
DAQ Data Acquisition
DESY Deutsches Elektronen-SYnchrotron
DT Drift Tube
ECAL Electromagnetic Calorimeter
FEM Finite Element Method
FWHM Full Width Half Maximum
GEM Gas Electron Multiplier
HCAL Hadronic calorimeter
HEP High energy physics
HL-LHC High Luminosity LHC
HV High Voltage
IP Interaction point
LEP Large Electron Positron
LHC Large Hadron Collider
LS1/2 Long Shuthdown 1/2
MPGD Multi-Pattern gaseous detector
MWPC Multi-Wire Proportional Chamber
PAI Photo-Absorption Ionization
PMT Photomultiplier
pp proton-proton
PS Proton Synchrotron
QFT Quantum Field Theory
QCD Quantum Chromodynamics
RPC Resistive Plate Chamber
SM Standard Model
SPS Super Proton Synchrotrron
SUSY Supersymmetry
TOE Theory Of Everything

1





Chapter 1

Introduction

1.1 Motivation of particle physics

There is nothing new to be discovered in physics now,
all that remains is more and more precise measurement.

In the second half of the nineteenth century, young students – including M. Planck – were
advised to leave the field of physics because it was generally accepted that physics was
complete, comprising Newton’s law of motion and gravity as well as Maxwell’s equations for
electromagnetism. The quote above by L. Kelvin in 1882 precisely summarizes the thoughts
of great physicists at that time. It soon became clear that is was not possible to fit some
phenomena in this classical picture such as the position of the earth relative to the vacuum,
the black body spectrum and the atomistic view on matter with the recently discovered
electron. Great minds such as A. Einstein, M. Planck and N. Bohr were needed to think
beyond the classical thoughts to solve these problems. Special and general relativity was
developed by Einstein in 1900–1915 leading to a successful theory for dynamics and gravity.
Bohr successfully implemented the forced idea of energy quantization, proposed by Planck in
his theory to explain the black body spectrum, by assuming that the energy levels inside an
atom are discrete. This was the starting point of the development of Quantum Mechanics
where the wave-particle duality, known from light phenomena, was generalized to matter by
L. de Broglie in 1924. This gave independently rise to wave and matrix mechanics developed
by E. Schrödinger and W. Heisenberg respectively, which were found to be equivalent by
P.A.M. Dirac in 1930. The peculiar discovery that an electron has an additional angular
momentum, later called the spin, was perfectly described with quantum mechanics which
provided a first experimental validation. The consequences of quantum mechanics deeply
shocked the world of physics as it turned out Nature behaves non-deterministic. As time
moved on, Dirac tried to unify both quantum mechanics and special relativity within the
framework of Quantum Field Theory (QFT), leading to the existence of the positron. In
1931, E. Fermi developed a successful theory on β-decay wherein the neutrino was involved,
which was postulated by W. Pauli one year before. After the war, physicists explored the
world of atomic nuclei and the constituents of the proton and the neutron. This search was
triggered because of a tremendous increase of discovered particles in the fifties and early
sixties. Theoreticians developed the quark model as fundamental building blocks of these
particles (hadrons) to explain this ”particle zoo”, and the first experimental evidence was
observed in deep inelastic scattering experiments at the Stanford Linear Accelerator in 1968.
Together with the quark model, the strong force was introduced to explain quark-quark
interactions leading to confinement and the explanation of the strong nuclear force between
the protons and neutrons in atomic nuclei. The strong force was theoretically developed
within QFT and is nowadays referred as Quantum Chromodynamics (QCD). A new particle,

3
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the gluon, was proposed as the force carrier of the strong force and was discovered in the
eighties at DESY. Later on, in the seventies, S. Weinberg, A. Salam and S. Glashow proposed
a theory to unify the weak force describing β-decay and the electromagnetic force. This
resulted in the electroweak force, with as force carriers the heavy W± and Z0 vector bosons.
Both particles were experimentally observed by the UA1 collaboration at CERN in 1983.

The above paragraph describes a very brief history of particle physics and is nowadays sum-
marized as the Standard Model (SM) of particle physics. In this model, (visible) matter is
described with six types of quarks (u, d, c, b, t and b), six leptons (e, µ, τ , νe, νµ and ντ )
and their antiparticles. Furthermore, the electroweak and strong force is operating between
(some of) these particles with the vector bosons (γ, g, W± and Z0) as the force carriers.
Recently, the Brout-Englert-Higgs boson was added to the SM, discovered in 2012 by the
CMS and ATLAS collaborations at CERN. This boson is responsible for the existence of
the Higgs field, giving mass to the fundamental particles (except the neutrinos). However,
history is repeating itself because a beautiful theory such as the Standard Model is not able
to describe phenomena such as dark matter, matter-antimatter asymmetry, the gravitational
force and the neutrino masses. Different other theories such as supersymmetry (SUSY) were
developed in the nineties but are not yet experimentally verified. Other theories such as
string theory provides a Theory of Everything (TOE), combining general relativity with the
Standard Model. It is clear that experimental evidence needs to be obtained to discover new
or exclude existing physics. Hence, a lot of research experiments such as the LHC, astrophys-
ical experiments (IceCube at the South Pole, the Planck Observatory in space) and many
others are exploring this physics beyond the standard model.

1.2 Tools used in particle physics

The main modern tools used in particle physics are particle accelerators and detectors. Since
the advent of radioactivity in 1896, experimental physicists invented several detectors to
measure and identify radiation such as α particles and electrons. In the early days, great
discoveries such as the proton were achieved by using natural radioactive sources but it soon
became clear that the energy of such sources was not sufficient. Particle accelerators were
developed in the 1930s wherein elementary particles are accelerated and collided head on (or
impinging on a fixed target), producing other particles through materialization by E = mc2

or yielding scattering information. As the accelerator technology evolved in time, higher
energies became available producing a higher amount of particles in the collisions. Hence,
more sophisticated particle detectors were needed. This evolution is still going on today and
major efforts are done to obtain high performance detectors. In the following text, a brief
history of detectors is given, mainly based on [1], [2] and [3].

In the early days, it was already possible to detect X-rays by using photographic plates.
Charged particles could be detected with a cloud chamber, invented by C.T.R. Wilson in
1911 or by using ionization chambers developed by E. Rutherford and H. Geiger in 1908
and improved in collaboration with W. Mueller in 1928. The cloud chamber played a very
important role in experimental physics and was used with the discovery of the Compton effect,
cosmic muons and the positron. The scintillating principle was already known in the 1930s
but only became popular with the invention of the photomultipliers (PMTs) in the beginning
of the 1940s. It was mainly used as a counting detector and is nowadays still frequently
used in particle physics. After the war, the bubble chamber was invented based on the cloud
chamber where liquid H2 at its boiling temperature generates bubbles in the vicinity of an
ionization track. It was used for the detection of neutral currents in 1973 at CERN. The
spark chamber was developed already before the war, but was improved in the 1950s and
intensively used until the 1980s. This was the first detector which could be used and produced
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on a larger scale. The next important invention was the Multi Wire Proportional Chamber
(MWPC) in 1968, which consists of many parallel wires placed between two parallel plates.
Such detectors yield excellent spatial resolutions in the order of 300 µm and were mainly used
as tracking detectors. The position resolution was even further improved in 1971 with the
invention of drift chambers which uses a fast scintillator to determine the time of incident
from where the drift time of the primary electrons to the wire can be calculated. The initial
distance could then be extracted when the drift velocity was known.

Semiconductor detectors were developed in the 1980s but only widely used in the 1990s due
to optimized photolithography techniques which reduced the manufacturing costs. Silicon
detectors have good spatial and time resolutions but are still rather expensive when used on
large-scale detectors and therefore gas detectors are still used on large-scale detectors. From
the early 1990s, the Micro Pattern Gas Detectors (MPGD) have been developed to replace
the wires in the MWPC detectors by electrical micro-structures on the anode. However, it
turned out such detectors are barely radiation resistant and have a high dead time. A new
type of MPGD, the Gas Electron Multiplier (GEM), was proposed in 1997 by F. Sauli. He
proposed to add an intermediate grid between the two parallel plates acting as amplification
holes. Another common detector used is the Resitive Plate Chamber (RPC), developed in
the beginning of the 1980s. This detector originated from the spark chamber developed early
in the fifties, but a resistive layer of ≈ 1010 Ωcm is located before the anode and cathode
to reduce the spark probability. A comparison of both time and spatial resolution of the
different types of gas chambers is given in Table 1.1.

Table 1.1: Comparison of the spatial and time resolution of different types of gaseous detectors. The
position resolution depends on the granularity of the wires/strips and nominal values of
respectively 1 mm and 3 cm were used.

Detector type Invention Spatial resolution Time resolution

Spark chamber 1950s ∼ 1 mm 0.5–1 µs

RPC 1982 2–5 mm < 3 ns

MWPC 1990 300 µm 0.1 µs

GEM 1997 100 µm 5 ns

1.3 The Large Hadron Collider

The Large Hadron Collider (LHC) is a circular accelerator with 27 km in circumference,
situated 100 m below ground level near Geneva. It is the largest accelerator ever built which
accelerates two proton beams in opposite directions with a designed center-of-mass energy
of
√
s = 14 TeV. A scheme of the total accelerator complex and its experiments is shown

in Fig. 1.1. The aim of the LHC is to discover new physics at the TeV energy range, with
a main search for the Higgs boson. The latter was indeed discovered in 2012 during the
2010–2013 run. Besides the search for the Higgs boson which is part of the SM, the LHC also
investigates BSM theories such as dark-matter models (SUSY), string theory and the search
for extra dimensions.

The first LHC studies dated from 1982, but large progress was made after the discovery
of the W and Z bosons in 1983. At the end of the eighties, the Large Electron Positron
(LEP) collider became operational at CERN to perform detailed studies on the W± and
Z0 bosons. At the beginning of the nineties, it was agreed to use this 27 km LEP tunnel
to house the LHC accelerator. The LEP equipment was removed in 2002 and one year
later the LHC installation was started. The accelerator is not perfectly circular but rather
consists of straight and bending sections containing respectively 1232 dipole magnets and 392
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Figure 1.1: LHC accelerator complex with its four main experiments (CMS, ATLAS, ALICE and
LHCb) and its predecessor accelerators (SPS, PS, BOOSTER, LINAC2) [4].

quadrupole magnets for bending and focusing the beams. Before injecting the proton beams
in the LHC, several pre-accelerators are used to gradually increase the proton energy (see
Fig. 1.1), respectively the LINAC2 (50 MeV), Booster (1.4 GeV), Proton Synchrotron (26
GeV), Super Proton Synchrotron (450 GeV) and finally the injection in the LHC accelerator.
The beams are not continuous but divided into bunches in order to accelerate the beam
using radiofrequency cavities, installed near the quadrupole magnets. In total there are
3564 bunch spaces in which 2808 are filled with protons due to the limitations in the beam
injection process through kicker magnets. Each filled bunch contains about 1011 protons and
are squeezed together by the focusing magnets to a beam diameter of about 20 µm, yielding
a luminosity1 in the order L = 1034 cm−2s−1. At the interaction point (IP), every 25 ns the
proton beams collide head on which is equivalent to a bunch crossing (BX) frequency of 40
MHz (values valid for the 2011–2013 run).

The first beams at 14 TeV were expected in 2008 but due to an accident with the intercon-
nection between the magnets, around 100 magnets were broken and needed to be repaired.
In November 2009, the LHC was restarted and the protons were accelerated up to 7 TeV
at the beginning of 2010. One year later the beam energy was upgraded to 8 TeV. Due to
precautions after the magnet accident, it was decided not to go to the designed value of 14
TeV right away. After the 2010–2013 run, the first long shutdown (LS1) began in order to
repair and install new detector and accelerator equipment. The next run is foreseen to start
in 2015 with an energy of 13 TeV and eventually reaching the designed value of 14 TeV.
The second long shutdown (LS2) is planned in 2018-2019 in order to further upgrade the
equipment and prepare the system for the High Luminosity LHC (HL-LHC) in 2020. The
luminosity will then be increased by a factor 10, reaching a value of 1035 cm−2s−1.

Four large experiments are installed in the accelerator tunnel: ATLAS, CMS, ALICE and
LHCb. ATLAS and CMS are twins because both searches for the same physics, though
different detector technologies are used. ALICE is used for investigations in heavy-ion physics

1The luminosity L is an accelerator parameter as a function bunch crossing (BX) frequency and the amount
and density of the particles in each bunch. It is related to the pp-cross section σtot and the interaction rate R
through R = L ·σtot
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Figure 1.2: Sketch of the CMS detector with its main components [5].

using heavy ion collisions (lead nuclei) which where injected after global run in 2010 and 2012.
The LHCb detector is especially designed for research in b-quark physics. Furthermore,
several other experiments are housed in the LHC accelerator complex providing detailed
studies of specific processes.

1.4 The CMS experiment

The Compact Muon Solenoid (CMS) detector is one of the four large detectors installed in
the LHC tunnel. It measures 25 m long, 15 m in diameter and weights about 12500 tons. The
weight is mainly due to the superconducting solenoid that generates a magnetic field of 3.8
Tesla along the beam axis. It has a traditionally cylindrical structure divided in rings or shells
(see Figure 1.2). The innermost shell is the silicon tracker, followed by the electromagnetic
(ECAL) and hadronic (HCAL) calorimeters and ending with the muon chambers at the outer
shells. The silicon tracker is used as a tracking detector for all charged particles. Electrons
and photons are completely absorbed in the ECAL crystals and the hadrons are absorbed
in the HCAL. The magnet is placed between the calorimeters and the muon chambers. It
is a so called 4π-detector which almost completely covers the total solid angle. To achieve
this, the CMS detector is composed of a cylindrical part called the barrel, and closed by two
endcaps at each side of the barrel. A cross section in the (R, z)-plane is shown in Fig. 1.3.

As already mentioned before, at the interaction point every 25 ns two proton bunches collides
head on with the production of many particles such as photons, leptons, fermions, etc. The
Level-1 trigger system, operating at the BX frequency of 40 Mhz, selects online according
to complex algorithms the interesting events up to a rate of 100 kHz. Trigger decisions are
made only with raw data from both calorimeters and the muon detectors. With a luminosity
L = 1034 cm−2s−1 and a proton-proton cross section σpp = 115 mb at the designed center-
of-mass energy, the interaction rate is equal to r = L ·σpp ≈ 1.15 · 109 Hz, or about 36
interactions per bunch crossing. This phenomenon, called in-time pile-up, makes it very hard
to select interesting events. Algorithms were written and implemented in the Level-1 trigger
hardware which are based on particle identification and imposing thresholds on energy or
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Figure 1.3: CMS cross section in the (R, z)-plane, indicating the different subdetectors of the muon
system. The proposed GE1/1 and GE2/1 layers are indicated in red [6].

momentum. For example, the CMS Level-1 trigger imposes typically the following thresholds
for electrons and muons:

single electron: p > 4 GeV/c,

single muon: pT > 20 GeV/c.

Below these thresholds, different phenomena such as multiple scattering becomes dominant
which drastically decreases the precision of the measurement and reconstruction. After the
Level-1 trigger, the (offline) High-Level trigger further reduces the event rate down to 100
Hz. Precise particle reconstruction algorithms are applied which uses the different detector
signals to obtain the particle flow and energy or momentum. Because the beam energy is such
high, the transverse momentum of the partons or quarks inside the protons can be neglected.
Hence, the total transverse momentum measured from one collision must add to zero. Within
this framework it is possible to calculate the missing energy carried by undetectable neutrinos
or BSM exotic particles.

A right handed coordinate system is defined having its origin at the IP, the x-axis pointed
towards the center of the LHC ring and the y-axis perpendicular to the LHC plane. Hence,
the z-axis is tangent to the beam line at the IP. It is convenient to use spherical coordinates
(θ, φ) to describe the geometry of the detector, with θ the angle measured from the z-axis.
However, the pseudorapidity defined as,

η = − ln tan

(
θ

2

)
(0 ≤ η ≤ ∞),

is more often used in high energy physics to describe the polar angle. Because the CMS
detector is cylindrically symmetric, local material variations are only along η and are (almost)
constant in the φ direction.
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The muon system

The muon detectors are used for muon identification, triggering and measuring the transverse
momentum. They are situated in the outermost shells of the CMS detector and consist of drift
tubes (DT) in the barrel region and cathode strip chambers (CSC) in the endcap region (see
Figure 1.3 for a cross sectional view). An additional trigger signal is provided by the RPCs,
both present in the barrel and endcap region, having a different sensitivity to background
events. The CSCs and DTs are used as tracking detectors whereas the RPCs are used for time
measurements, resulting in an excellent muon detector with high precision and efficiency. In
order to measure the transverse momentum of the muons, a returning yoke is placed between
the muon detectors which bends the muons in the magnetic field. The transverse momentum
is then extracted by measuring the bending curvature of the particles trajectory through this
field. The global active detector material coverage is limited by |η| ≤ 2.5, distributed over
0 ≤ |η| ≤ 1.2 for the barrel and 0.9 ≤ |η| ≤ 2.4 for both endcaps. The endcap RPC system
consists of four disks on both sides of the IP (RE-4 up to RE4), each disk containing three
rings equipped with RPC detectors (REi/1, REi/2 and REi/3, where i represents the disk
number). However, due to funding problems, the fourth endcap (RE4 and RE-4) disc with
RPCs was not ready for installation before the first run in 2010, as well as the first ring
in all disks remained unoccupied with RPCs. The coverage of the RPCs was only up to
η ≤ 1.6 during the first run. The installation of ring 2 and 3 was successfully done during
LS1. The forward region 1.6 ≤ η ≤ 2.5 corresponding with ring 1 will remain empty during
the second run. High particle fluxes in the order of 10 kHz/cm2 are expected in this forward
region when the luminosity will be increased during the third run from 2020. The current
RPCs are not expected to be suitable to handle such high particle rates and new detectors
must be developed. After initial studies, the GEM detector was proposed as a candidate for
installation during the LS2. Indeed, excellent properties such as handling the high particle
rates, a good spatial and time resolution, radiation resistant, operational in a high magnetic
field, etc. proved the GEM as a suitable detector in the forward region. In Fig. 1.3, both
proposed GEM stations GE1/1 and GE2/2 are indicated in red. The detectors are still in
development for further optimization and for improving the construction techniques on a
large scale. More details about the properties, performances and construction techniques are
given in chapter 3.

1.5 Thesis overview

The present text is the description of the simulations performed on GEM detectors. Although
already proved to be excellent detectors, there is still some freedom to improve its properties
and performances. The purpose of this master thesis is the investigation of the time resolution
with the use of simulations. Indeed, simulations are appropriate for such studies as there is a
large degree of freedom in the parameter space (e.g. dimensions, environmental parameters,
etc.) which are not always directly accessible in the laboratory. Furthermore, the development
of algorithms and simulation software started already in the eighties and has now become a full
branch in experimental physics for the development of small and large scale detectors. A lot of
work have been done through the years to implement and optimize physical processes aiming
more accurate simulations. On the contrary, detailed simulations require heavy computation
time and it is the task of the experimental physicist to neglect unwanted physics to reduce
the computation time.

The investigation on the GEM time resolution is done gradually and requires in the first
place a thorough discussion of the processes in gaseous detectors. The necessary concepts
are introduced and supported by elementary results obtained with the simulations. The
GEM detector is introduced and the working principle is explained with the previous intro-
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duced concepts. The properties, performances, production processes and applications will
be discussed, mainly with a view on the CMS GEM prototypes. Afterwards, the simulation
software is discussed because it is necessary to understand at some level the algorithms and
physical processes implemented in the simulations. After having introduced the necessary
concepts and the simulation tools, a single GEM detector is simulated and the results are
discussed in detail. Furthermore, some experimental measurements are explained and the
results of the simulations are compared to experimental results. In the next and final step,
the concepts of time resolution are defined and a method is deduced to improve the time
resolution of GEM detectors. This method is applied to different configurations and also on
realistic scenarios such as the CMS GEM detectors.



Chapter 2

General principles of gaseous detectors

Prior to the discussion on the GEM simulations in the following chapters, the concepts and
principles of gaseous detectors are described in detail. Indeed, the origin of the time resolution
of gaseous detectors traces back to the physics on atomic and molecular level. Furthermore, it
is essential to understand the algorithms and models used in the simulation tools in order to
validate the results of the simulation. In this chapter, we systematically discuss in detail the
different processes occurring in gaseous detectors from the interaction of the to be detected
particle with the detector up to the creation of the signal on the readout electrodes. As a
good starting point, a quick and general overview of the different processes in such detectors
is given, followed by a detailed discussion in the next paragraphs. This text is mainly based
on [7] and [8], individual references are given in the text.

2.1 General processes in gaseous detectors

In general, a gaseous detector in its simplest form consists of a gas volume which is typically a
few mm wide, enclosed between two metal electrodes. An electric field is applied between both
electrodes which automatically defines the anode and cathode electrodes. When a charged
particle traverses the gas, it locally ionizes the gas atoms liberating electrons and ions along
its path. Both electrons and ions drift towards the anode and cathode respectively under
influence of the electric field. However, when the electric field is sufficiently high, the electrons
can gain enough energy to further ionize the gas atoms. This triggers an avalanche process
and the amount of free electrons and ions grows exponentially. The liberated electrons and
ions further drift towards the anode and cathode respectively, inducing a current on both
electrodes. This current is picked up by the readout electronics to create the final signal.
The pulse shape of this signal can be analyzed and the time resolution can be defined.

2.2 Interaction of a charged particle with the gas atoms

When a charged particle passes through a gas medium, it locally ionizes the gas in the
vicinity of its trajectory due to inelastic collisions with the gas atoms. One refers to an
ionizing collision when the inelastic collision liberates at least one electron. Depending on
the particle, the deposited energy can be only a fraction of its energy (e.g. muons) or the
particle can be completely absorbed in the gas (e.g. photons). It is possible, however, that a
single ionizing collision with a gas atom liberates more than one electron. Therefore one refers
to an ionization cluster rather than a single ionization electron. The ionization is a result from
inelastic collisions with the gas atoms or molecules as a whole, or individual elastic collisions
with the atomic electrons. In general many other processes occur depending on energy of
the charged particle, but only the inelastic collisions are important because these processes
only generate directly ionization. The liberated electrons in a cluster can be regarded as free

11
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within a certain time range and drift under influence of the electric field towards the anode
where an avalanche might be triggered along its path.

If the particle is relativistic, which is usually the case in high energy physics (HEP), the energy
loss from a single ionization collision is negligible. As a result, each collision or ionization
process is independent and one can define a mean-free-path λ between two gas ionization
encounters:

λ =
1

Nσi
, (2.1)

with N the number density of the gas mixture. σi is the total ionization cross section which
depends on the energy of the charged particle and the gas mixture. The total ionization
cross section for a gas mixture can be calculated by weighting the individual ionization cross
sections σj of the gas constituents with their corresponding number densities Nj :

σi,tot =
∑
j

σjNj . (2.2)

In fact, λ depends on the pressure p and temperature T because N = N(p, T ), which can be
expressed in first order by the ideal gas law p = NkT , with k the Boltzmann constant. As a
result, λ is proportional to the temperature and inverse proportional to the pressure.

The amount of ionization encounters k over a track length L can be described with a Poisson
distribution with mean L/λ:

P (L/λ, k) =
(L/λ)k

k!
exp(−L/λ). (2.3)

The inverse of λ is called the cluster density or the specific primary ionization, i.e. the
number of clusters per unit length. In Fig. 2.1 (top), the cluster density is plotted for
incident muons as a function of the kinetic energy. This plot is obtained with the simulation
software HEED which will be discussed in the next chapters. The cluster density is one of
the important parameters which dominates the time resolution and therefore the primary
ionization process deserves a more detailed discussion. However, a theoretical description of
the primary ionization process is rather difficult because many processes occur on the atomic
level and must be described with quantum mechanics. A complete theory to describe globally
the primary ionization does not (yet) exist. In a first attempt, we can estimate the amount
of ionization electrons with the use of energy conservation. The W -value for a gas mixture is
defined as the mean energy needed to create one electron-ion pair and must be measured for
every gas mixture and type of charged particle. The W -value is at least equal to the lowest
ionization potential Imin of the gas mixture. In general, however, the W -value is higher than
Imin because also non-ionizing processes (e.g. excitations) occur whose energy transfer is
not available for ionization. For example, the lowest ionization potential for Ar is 15.76 eV
whereas the W -value is equal to 26.3 eV. It should be noted that the W -value for a given
gas mixture is almost independent of the type and energy of the charged particle. Typical
values are in the range of 25–35 eV. Now, when a charged particle traverses the gas medium
depositing an energy Q in the gas medium, the average liberated electrons 〈n〉 is equal to:

〈n〉 =
Q

W
. (2.4)

This equation is only useful if the value of Q is known. For photons, which are completely
absorbed in the gas medium provided this medium is a few mm thick, the full photon energy
Eγ is used to create electron-ion pairs and thus Q = Eγ . For charged particles which deposits
only a small fraction of its initial energy, the deposited energy can be calculated if the stopping
power S is known, defined as:
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Figure 2.1: Simulated cluster density (top) and stopping power (bottom) for different noble gases
at standard conditions (p = 1 atm, T = 293.15 K) as a function of the muon energy
E. Plots obtained with HEED simulations and may slightly differ from experimental
results (see 4.2.1).

S(E) = −dE

dx
. (2.5)

The stopping power curves are tabulated for various charged particles impinging on different
targets. Once known, the total deposited energy can then be calculated as:

Q =

∫
dE = −

∫
l
S(E) dx. (2.6)

Many models have been proposed in order to describe theoretically the stopping power, de-
pending on the type of processes and the energy of the charged particle. Indeed, the stopping
power can be divided in various contributions from different processes such as electronic pro-
cesses, radiative processes and nuclear processes [9]. For heavy relativistic particles such as
muons, one can write S(E) = Se(E) + b(E)E, where Se(E) is the electronic part due to
inelastic collisions and b(E)E captures the radiative and nuclear contributions. For particle
detectors, only the electronic processes are important because they lead directly to ionization.

Historically, H. Bethe was the first to calculate the electronic stopping power for non-
relativistic particles in 1930 and extended his calculation for relativistic particles in 1932.
His formula reads:
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Se(E) = −dE

dx
=

4π

mec2

nZ ′2

β2

e4

(4πε0)2
·
(

ln

[
2mec

2β2

I(1− β2)

]
− β2

)
, (2.7)

with:
me the electron rest mass,
c the speed of light,
e the electronic charge,
n the electron density in the gas medium (n ∝ Z, with Z the atomic number of the gas),
ε0 the vacuum permittivity,
Z ′ the charge of the incident particle,
I the mean excitation potential of the gas medium and
β the velocity of the incoming particle over the speed of light.

This equation was obtained by making use of first-order quantum perturbation theory and is
only valid for heavy charged particles. Higher order corrections are calculated which yields
terms up to Z3 (Barkas-Andersen) and Z4 (Bloch). In the model proposed by Bethe, the
gas medium is described by a single parameter, being the mean excitation potential I. Bloch
showed in 1933 that for atoms the mean excitation potential can be written as I = (10 eV)Z.
In Fig. 2.1 (bottom), the (simulated) electronic stopping power is plotted for incident muons
for different noble gases. These curves tend to have a similar shape as the cluster density
curves. Indeed, both quantities are related to each other which can understood from a simple
energy balance. When a charged particle generates λ−1 clusters per unit length, each cluster
having on average n electrons, the energy balance reads:

W ·n · 1
λ

=

〈
dE

dx

〉
. (2.8)

Assuming n and W as constant over the total energy range, λ−1 is indeed proportional to
the Bethe energy-loss formula. Small deviations can be ascribed due to a slight dependence
of W on the energy. The dependence of λ−1 on Z, with Z the (mean) atomic number of the
gas, is clearly shown in Fig. 2.1. Indeed, the heaviest noble element Xe shows the highest
cluster density and vice versa.

Up to now we only concentrated on the energy aspects of energy loss, but not on specific
interactions and processes occurring in the primary ionization process. For simulation pur-
poses, more detailed information is needed such as the position of the clusters and the exact
energy transfer. The previous quantities only describe these phenomena on an average level.
As a result, a more fundamental theory is needed to describe the primary ionization process.
One such theory is the Photo Absorption Ionization model which is discussed in the next
section.

2.2.1 The Photo-Absorption Ionization model

In the Photo-Absorption Ionization (PAI) model, introduced by Allison and Cobb in 1980
[10], the differential cross section dσ/dE is calculated, from which other quantities can be
derived such as the energy spectrum F (E) dE of the primary electrons or the cluster density.
In the model, it is assumed that the total ionization cross section σi depends in a certain way
on the photo-absorption cross section σγ , i.e. the absorption cross section of real photons.
Indeed, the interaction of a charged particle with a gas atom is pure electromagnetic with
the exchange of virtual photons (γ∗) between the charged particle and atom.

The gaseous medium can be described with a complex dielectric constant ε = ε1 + iε2.
Recalling that the imaginary part of the dielectric constant of a plane wave traveling in a
medium describes the damping coefficient (and thus the energy loss), the photo-ionization
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Figure 2.2: Example of direct core shell ionization leaving a photoelectron and a vacancy (left) and
relaxation of the atom through emission of an Auger electron (center) or a fluorescent
photon (right).

cross section σγ is directly related to the imaginary part ε2. The absorption of a (virtual)
photon results in the emission of an electron and a vacancy in the ionized atom (see Fig. 2.2
(left) as an example). The emitted electron is called the photo-electron and originates most of
the time from the K-shell as the energy transfer between the atom and the charged particle is
usually very high (relative to the atom binding energies). After a short time, the atom relaxes
by filling this vacancy with an electron from a higher shell. The energy released with this
process can be transferred to a second atomic electron (an Auger electron), or more likely, the
emission of a fluorescent photon (see Fig. 2.2 center and right respectively). This photon can
escape the gas medium or can again be absorbed inducing further ionizations. Indeed, the
energy of the fluorescent photon is equal to the binding energy of the relaxed electron which is
in the order of keV. The result of the total ionization process are photo- and Auger electrons
and are called primary electrons. The energy of such electrons is typically in the order of 1–10
eV, lower than the lowest ionization potential of the gas. This ionization mechanism is only
valid for one cluster is repeated several times along the path of the particle, depending on σi
(see Eq. 2.10). However, the fluorescent photons can travel a certain distance through the
medium inducing new clusters on different locations. Furthermore, when a primary electron
is very energetic (due to a large and efficient energy transfer), this electron can also travel
trough the medium inducing other ionizations along its path. These energetic electrons are
called δ-electrons.

When applying this theory on virtual photons, the dispersion relation E = pc/
√
ε does

not hold anymore and such relationship has to be premised. Allison and Cobb assumed
the absorption as point like in the energy-domain, i.e. described with a Dirac function.
Combining these principles, they were able to calculate the differential cross section in a
semi-classical approach. For one primary electron, the differential cross-section reads:

dσ

dE
=

α

β2π

[
σγ(E)

EZ
ln

2mec
2β2

E[(1− β2ε1)2 + β4ε22]1/2
+

Z

N~c

(
β2 − ε1

|ε|2
)
θ

+
1

ZE2

∫ E

0
σγ(E′) dE′

]
, (2.9)

with the following constants:
α the fine-structure constant,
β the velocity of the incoming particle over the speed of light,
θ = arg(1− ε1β2 + iε2β

2),
E the energy transfer to the primary electron,
Z the (weighed) atomic number of the medium and
me the electron mass.
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The photo-ionization cross section σγ remains as a free parameter in this equation, and must
be known either from a theoretical model or from experimental results. For high energies
above the K-shell ionization potential, it can be shown that the differential cross section
reduces to the Rutherford cross-section. Indeed, at very high energies, the electrons can be
regarded as free and the charged particle interacts elastically with the atomic electrons.

Once the differential cross-section is calculated, the cluster-size distribution can be obtained
according to:

1

λ
=

∫
N

dσ

dE
dE, (2.10)

and the energy spectrum of the primary electrons can be calculated as:

F (E) =
N

1/λ

dσ

dE
. (2.11)

2.2.2 The Penning effect

The previous discussion only deals with direct ionization, e.g. µA→ µA+e−. Depending on
the gas mixture, other ionization processes could also occur via excited states of gas atoms.
One such process is where the charged particle excites an atom A which transfers its excitation
energy to a atom B. The latter atom can be ionized if the excitation energy of A∗ is higher
than the lowest ionization potential of B. This process, summarized by A∗B → AB+e− is
called the Penning effect.

The penning effect reduces the W -value as more primary electrons are generated. It has to be
implemented in the simulations algorithms because it can also affect the gain of the detector.
The Penning transfer probability fp is defined as a measure for the Penning effect, depending
on the gas mixture and the relative densities of the atoms. It turns out the determination of
fp is a rather difficult task because it has to be matched with experimental results and no
direct formula or theory is available. As an example we consider the Ar–CO2 gas mixture
which is typically used in gaseous detectors. The lowest ionization potential of CO2 is equal
to 13 eV and is lower than the excitation levels of Argon. The Penning transfer probability
is equal to fp = 0.57 when the gas composition is 75–25%.

2.3 Charge transport

Electrons and ions created in primary ionization processes can be regarded as free in a short
time interval and are subjected to different processes such as diffusion, recombination, etc.
Furthermore, the trajectories of electrons and ions are governed by the electromagnetic field
and collisions with the gas atoms. For detailed simulations purposes, their trajectories must
be calculated accurately and all these effects must be taken into account. This requires in the
first place the knowledge of the electric and magnetic field (E and B) inside the gas medium,
either being an analytic expression or obtained by Finite Element Methods (FEM).

In a macroscopic picture, the general equation of motion of a charged particle with mass m
(electrons or ions) in an electromagnetic field can be written as:

m
du

dt
= q(E + u×B)−Ku. (2.12)

The scalar K represents the isotropic frictional force due to collisions with the gas atoms,
which can be regarded as the average friction due to microscopic collision processes. After
introduction of a time constant τ = m/K, the steady-state solution (t � τ) in absence of a
magnetic field (B = 0) reads:
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Figure 2.3: Simulated electron drift velocity for common gases used in this paper, as a function of
the electric field. Plots obtained with Magboltz simulations and may slightly differ from
experimental results (see 4.2.2).

u =
q

m
τE = µE = vd. (2.13)

The steady-state value of u is called the drift velocity vd and is proportional to the electric
field. However, the proportionality constant µ, called the scalar mobility, depends in general
on the magnitude of the electric field and no linear relationship is obtained. In the next
section, the electron drift velocity will be treated on a microscopic level where τ will have a
physical interpretation.

2.3.1 Drift of electrons

The energy distribution of free electrons can be described by the classical Maxwell-Boltzmann
distribution:

f(ε) =

√
ε

πkT
exp

(
− ε

kT

)
. (2.14)

In this formula, ε is the energy of the free electrons, T is the absolute temperature and k is
the Boltzmann constant. The average energy of free electrons is called the thermal energy
and is equal to ε0 = 3

2kT . This can be understood from the equipartition theorem where each
degree of freedom has a contribution of 1

2kT . Electrons liberated from ionization processes
cannot completely be regarded as free (only after a very short time interval) but are governed
by collisions with the gas atoms and the electric field present in the detector. The electrons
are isotropically scattered from the gas atoms because of its small mass. The average time
interval between two collisions is denoted as τ and the average electron energy can be written
as the sum of the thermal energy ε0 and a contribution εE gained from the acceleration in
the electric field:

ε =
1

2
mv2 = εE + ε0 = εE +

3

2
kT. (2.15)

The electric field in particle detectors is sufficient high such that εE � ε0 and thermal motion
can be neglected. The mean-free-path λ between two collisions can be expressed as a function
of the collision cross section σ(ε):

λ =
1

Nσ(ε)
, (2.16)
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where N is the number density of the gas atoms. The total cross section consists of elastic
(recoil) and inelastic collisions (excitations: shells, rotational, vibrational). Combining the
average velocity v with the mean-free-path λ, the average time between two collisions can be
expressed as τ = λ/v, or:

τ = τ(ε) =
1

Nσ(ε)v(ε)
. (2.17)

The inverse of τ is sometimes called the collision rate. We are now able to reinterpret the
scalar mobility. An electron is accelerated in the electric field with a component

a = − eE
me

. (2.18)

The drift velocity is defined as the average additional velocity gained through the electric
field, or the average of the acceleration multiplied by the time between two collisions:

vd = 〈at〉 = − eτ
me

E = − e

me

1

Nσ(ε)v(ε)
E. (2.19)

This equation shows the dependence of vd on the average energy ε of the electrons (and thus
on E) as well as the dependence on the cross section of the processes and the environmental
parameters such as the temperature and pressure. In Fig. 2.3, the electron drift velocity
is plotted for common used gases in this paper. This plot is obtained with Magboltz, a
simulation tool which will be discussed in chapter 4.

2.3.2 Drift of ions

The treatment of the drift velocity for ions is much more complicated than for electrons. Due
to a large ion mass, the energy transfer between the ion colliding with a gas molecule is much
higher than for electrons. Therefore, the collision is not isotropic and must be treated with
the conservation laws of energy and momentum. The energy gained through the electric field
is much smaller than for electrons because of the large ion mass and thus the average ion
energy is mostly thermal energy. Hence, an analytic treatment of the ion drift velocity as
a function of the electric field is very complicated. The global result after such theoretical
calculations can be summarized in the definition of the ion mobility µ, which has formally
the same definition as the electron mobility:

vd = µ(|E|)E. (2.20)

The ion mobilities are tabulated for different gases as a function of the electric field. For gas
mixtures, the drift velocity can be calculated with Blanc’s law:

1

vd
=
∑
k

Nk

N

1

vd,k
, (2.21)

where the sum runs over all the gas mixture constituents with densities Nk and N =
∑

kNk.

2.3.3 Diffusion

Diffusion is the natural process where, for example, a dense cloud of electrons will spread out
in space. This effect is important in particle detectors as it could influence the transport of
electrons. When a cloud of particles is squeezed at t = 0 in a single point r = 0, it will diffuse
following a Gaussian profile in space:

n(r, t) =
1

(4πDt)3/2
exp

(
− r2

4Dt

)
, (2.22)
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Figure 2.4: Simulated attachment for fluoride gases used in this paper, as a function of the electric
field. Plots obtained with Magboltz simulations and may slightly differ from experimen-
tal results (see 4.2.2).

with a standard deviation of σ =
√

2Dt. D is called the diffusion constant and depends on
the energy of the electrons or ions. For charges at thermal energies (e.g. ions or electrons in
very low electric fields), there exists a relationship between D and the mobility µ:

D =
kT

e
µ. (2.23)

This relationship is called the Nernst-Townsend or Einstein formula. Because the mobility for
electrons is much higher than for ions, the diffusion process is more important for electrons.

When electric or magnetic fields are present, the diffusion process seems to be not isotropic
and a diffusion tensor must be introduced rather than a single diffusion constant. When only
an electric field is present, the diffusion coefficient can be split up in a longitudinal (Dl) and
transverse (Dt) part, relative to the direction of the field.

2.3.4 Recombination

When a positive ion and a negative electron collide, they might be recombine to form a
neutral atom releasing a low energy photon. The recombination rate equation can be written
as:

Rc =
dn+

dt
=

dn−

dt
= αn+n−, (2.24)

with n+, n− the ion and electron concentration respectively and α the recombination co-
efficient. Recombination can be important because it could loss the primary electrons and
reducing the detector efficiency. However, it seems recombination is not an important effect
when high electric fields are present because the charges are strongly separated by the field.

2.3.5 Attachment

A more important effect for electron loss is attachment. Electronegative atoms with high
electron affinities could attach electrons in a collision to form a stable negative ion and a low
energetic photon. Typical atoms are the halogenides (F, Cl) or oxygen, the latter which could
be present as an impurity. It is important to reduce the amount of attachment by choosing
a good gas mixture in order to collect all the primary electrons without losses. On the other
hand, if attachment is a dominant process, the slow negative ions drifting towards the anode
will cause noise on top of the signal.
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The decrease of electrons dN due to attachment per unit length can be written as:

dN = −Nη ds, (2.25)

where η is the attachment coefficient expressed in cm−1, and is equal to the amount of elec-
trons attached per unit distance in the gas medium. It depends on the gas composition
(attachment cross sections) and electric field, and must be measured for each gas mixture.
At low electric fields, η = 0 because the mean energy ε of the electrons is too low to induce
attachment as the cross sections are very low at low electron energies. Furthermore, qual-
itatively, the attachment coefficient is in first order proportional to the electronegativity of
the gas atoms. Indeed, electronegative atoms tend to form stable negative ions by attracting
an electron. This is the highest for the halogenides (F, Cl, O). For noble gases, the attach-
ment coefficient is zero. For the common fluoride gases used in this paper, the attachment
coefficient is plotted in Fig. 2.4.

2.3.6 The Boltzmann equation

Gases are excellent described by statistical mechanics, developed at the beginning of the
twentieth century. For non-equilibrium systems (e.g. under influence of an electric field),
the gas can be described by the Boltzmann transport equations [11]. In this theory, each
component of the gas is described by a probability density function fi(r,p, t), defined such
that the amount of gas molecules or atoms of type i is given by:

dNi = fi(r,p, t) d3r d3p. (2.26)

The change of f in time has contributions from collisions, diffusion and eventually an external
applied force. The external forces are referred in this discussion to electromagnetic fields. The
collision contribution consists of elastic and inelastic terms described by their cross sections.
At relative high electric fields, the inelastic terms contains processes such as ionizations
and attachment whereas for lower electric fields electronic and vibrational excitations are
dominant. When the external force is expressed by a field F(r, t), the Boltzmann equation
becomes:

∂fi
∂t

+
pi
mi
· ∇fi + F · ∂fi

∂pi
=

(
∂fi
∂t

)
coll

. (2.27)

In this equation, mi is the mass of the gas component i. The term in right-hand side of the
equation represents the collision term and must be calculated for the individual processes
(elastic and inelastic).

Once the probability density function is known, one can calculate the gas parameters such as
drift velocity, diffusion, attachment and Townsend coefficient. However, it is in general not
possible to calculate fi analytically and one must apply numerical calculations such as Monte
Carlo integrators. An example is the Magboltz simulation tool which is briefly discussed in
section 4.2.2.

2.4 Charge amplification

The amount of primary electrons is too low to create a detectable signal in the readout
electronics. Indeed, such amount of electrons will induce a signal which is comparable to the
electronic noise level and it will be impossible to distinguish between noise and signal. It is
necessary to increase the amount of signal electrons with a factor of 102− 108, depending on
the type of the detector and the electronics.
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The amplification process in gaseous detectors is achieved by applying a strong (local) electric
field inside the detector. The primary electrons drifting in this strong field gain enough energy
to ionize the gas atoms, liberating additional electrons which in turn ionize the gas and a
cascade of ionizations will develop. This cascade, or avalanche, stops when the electrons are
captured on the anode or when the electric field is too low to induce further ionization. The
latter is the case in GEM detectors, which have strong non-uniform fields. One refers to the
proportional mode if the signal is proportional to the total amount of electrons generated.
However, when the electric field is very high, the large amount of slow drifting ions generated
in the avalanche can distort the electric field and nonlinear effects will occur. This region is
called the limited proportionality. If the electric field is further increased, the amount of ions
will decrease the electric field such that the avalanche cannot continue and we speak of the
Geiger-Mueller region.

The lateral extend of the avalanche is typically in the order of 10–100 µm and is mainly
ascribed to the diffusion of the electrons and electrostatic repulsion. Another important
effect is the generation of UV photons. As already described in section 2.2, photons are
emitted during the ionization process whose energy depends on the excitation of the atoms
and thus on the energy transfer. Photons emitted in the amplification process are mainly
UV photons and could propagate through the medium causing a lateral extension of the
avalanche. It is even possible that an UV photon can cause a breakdown of the avalanche by
triggering a second avalanche further away. The photon propagation can be reduced by using
quench gases, typically organic gases, which have relative high absorption cross sections for
UV photons. Frequently used gases are carbon dioxide (CO2), alkanes (CiH2i+2), ethylene,
etc.

2.4.1 Townsend coefficient and gain factor

Charge amplification is a very complex process involving many contributions from different
processes such as ionizations, excitations, scattering, repulsion, etc. A theory on molecular
level to describe the avalanche does not exist. However, from a macroscopic point of view
the increase of electrons dN per path length ds can be described by:

dN = Nα ds. (2.28)

α is called the (first) Townsend coefficient (expressed in cm−1). It depends on the electric
field because the field indicates the mean energy between two collisions and hence the amount
of ionization. Below a certain threshold Emin, the field is too weak to trigger an avalanche and
the Townsend coefficient is zero. As a function of the electric field, the Townsend coefficient
is plotted in Fig. 2.5 for common used gases. This plot is obtained from Monte Carlo
simulations with Magboltz. The dependence of α on the electric field makes it difficult to
integrate Eq. 2.28 analytically in nonuniform fields. In general, without the knowledge of
the relationship α(E) (with E = |E|), the solution of this equation is given by:

N

N0
= exp

[∫
α(s) ds

]
= exp

[∫
α(E)

ds

dE
dE

]
. (2.29)

The ratio N/N0, with N0 the amount of initial electrons is called the avalanche gain or gas
gain. This gain does not necessarily corresponds to the effective gain of the detector as
the electrons are not all captured by the readout electrodes. The first Townsend coefficient
α depends on the gas mixture (i.e. on the ionization cross sections) and environmental
properties (density, pressure, temperature). With ρ the density of the gas mixture, it is
experimentally found that the following relationship is valid:

α(E, ρ) = f(E/ρ)ρ. (2.30)
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Figure 2.5: Simulated Townsend coefficients for common gases used in this paper, as a function of
the electric field. Plots obtained with Magboltz simulations and may slightly differ from
experimental results (see 4.2.2).

2.4.2 Gain fluctuations

Many processes cause fluctuations of the gas gain factor G. They can be categorized in sta-
tistical and local variations. The latter is a combination of effects such as pressure variations,
mechanical imperfections, space-charge variations due to ions, etc. The statistical fluctuation
is a result of the random nature of the multiplication process. We only concentrate here on
the statistical fluctuations, because these are especially suited to study with Monte Carlo sim-
ulations. In strong non-homogeneous fields, the calculations were performed by Alkhazov[12]
and he showed that the statistical gain distribution is given by a Polya distribution:

P (n) =

(
α

µ

)α 1

Γ(α)
nα−1 exp

[
−αn
µ

]
. (2.31)

In this equation, µ is the average gain and α is related to the root-mean-square value through:

σ2 =
µ2

α
. (2.32)

In Fig 2.6, the Polya distribution is plotted for different values of µ and α. For α = 1 the
exponential distribution is obtained from where the normalization can easily be checked.

Originally, the work of Alkhazov was based on gain fluctuations in wire chambers having an
1/r dependence of the electric field. It turns out the Polya distribution can also be used for
other gaseous detectors, even detectors with uniform fields.

2.4.3 Effective Townsend coefficient

In gas mixtures where the attachment coefficient is high, the attachment of electrons can
limit the avalanche growth. By combining the attachment and avalanche process, the total
change of electrons dN per unit distance ds is equal to:

dN = Nα ds−Nη ds = N(α− η) ds. (2.33)

The factor ᾱ = α − η is called the effective Townsend coefficient. The gain G is then
subsequently lower and can be calculated by:

G = exp

[∫
(α(E)− η(E))

ds

dE
dE

]
. (2.34)

Again, E = |E|, the magnitude of the electric field.
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Figure 2.6: Polya distribution.

2.5 Signal creation

After the amplification process, the electrons drifts towards the anode, inducing a current
signal which can be processed by the readout electronics. It is a common misunderstanding
that the signal is created when the charge is collected on the electrode. In fact, every moving
charge will induce a current signal on the surrounding electrodes, before the actual collection
of the charge. The theory describing this charge induction is called the Shockley-Ramo
theorem which will be introduced in this section.

A particle detector consists of dielectric materials and electrodes which can be regarded as
equipotential surfaces. The total system can be described with a capacitance matrix Cnm,
defined as:

Qn =
N∑
m=1

CnmVm, (2.35)

if the detector consists of N electrodes with charge Qn and potential Vn. The reciprocity
theorem relates two different configurations of V and Q having the same capacitance matrix
through:

N∑
n=1

QnV
′
n =

N∑
n=1

Q′nVn. (2.36)

Furthermore, due to Gauss’s law, the sum of the charges on the electrodes is equal to the
sum of the charges between the electrodes.

Consider now a gaseous detector with N electrodes (readout strips, cathode, etc.), and one
wants to calculate the charge induced on electrode 1 from a charge Q0 at position x inside the
gas volume. The charge can be seen as an infinite small electrode at potential V0. To continue,
we consider two electrostatic configurations. In the first configuration all the electrodes are
grounded (Vi = 0, i > 0) and have charges Qi. The second (virtual) configuration is defined
when electrode 1 has a potential equal to 1 (i.e. V1 = 1) whereas the others are kept at ground
potential (Vi = 0, i > 0) and the charge Q0 is set to zero. For this configuration, the potential
must be calculated inside the medium and this potential is called the weighting potential of
electrode 1, denoted as ψ1(x). After applying the reciprocity theorem, one immediately
obtains:
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qV ′0 +Q1Vw = 0 or Q1 = − q

Vw
ψ1(x), (2.37)

where Vw is the weighting potential which has been set to one (Vw = 1 V). The induced
current can be calculated as:

I1(t) = −dQ(t)

dt
=

q

Vw
∇ψ1(x)(t) · dx

dt
= − q

Vw
En(x(t)) ·v(t). (2.38)

This result is called the theorem of Shockley-Ramo. For the electrode of interest, the weight-
ing field En must be calculated from which the induced current can be calculated.

When a charge q at initial position x0(0) starts to move according to a path x(t), the total
induced charge at t = t1 can be calculated as:

Qtot
n =

∫ t1

t0

I1(t) dt = − q

Vw

∫ t1

t0

En(x(t))ẋ(t) dt =
q

Vw
(ψ1(x1)− ψ1(x0)) , (2.39)

and is independent of the path of the trajectory. Electrons are created together with ions
and both charges will contribute to the signal on an electrode. For example, if at t0 the
electron-ion pair is created, at time t1 they will be at positions x1 and x2 respectively. From
the result above, the total induced charge from both electron and ion on the anode electrode
n is given by:

Qtot
n = Qen +Qin =

q

Vw
(ψn(x1)− ψn(x2)). (2.40)

If both charges are collected on the anode and cathode electrodes respectively, the total
induced charge is Qtotn because ψn(x2) = 0 due to the definition of the weighting field. Hence,
the total induced charge on an electrode is equal to the total collected charge on that electrode,
when all the other charges are also collected on other electrodes.

2.6 Readout electronics

The raw signal induced on the electrodes must be processed in order to extract information
from it. The choice and design of the electronics is a rather difficult task which, in general,
depends on the application such as timing or charge measurement. Furthermore, different
side effects has to be taken into account that limits the flexibility. One such side effect is the
noise produced by the electronics. This random noise is superimposed on the signal pulse and
the electronics have to be designed to keep the noise as low as possible such that, above all,
the signal can be distinguished from noise. Especially for timing purposes the noise must be
as low as possible because any additional fluctuation on the signal will result in an additional
uncertainty on the time of the pulse (see later chapters).

Notwithstanding the flexibility in design, some elementary operations must be fulfilled. As
the raw signal is very weak, it must be amplified with a very sensitive and low noise amplifier.
This amplifier, called the preamplifier, is placed as close as possible to the readout electrode.
After the preamplifier the signal is shaped according to an appropriate function, such as a
Gaussian. The shaped signal is again amplified with a large factor. The purpose of the signal
processing is to obtain an well-known signal shape for a given incident particle in the detector.
A discriminator and/or analog-to-digital converter (ADC) can then be used to digitize and
store the signal with its properties (time, pulse-height, etc.).

We will not go into detail regarding the electronics but rather treat it as a black box with
a known transfer function H(s) in the Laplace domain with s = jω, the Laplace variable.
However, some specific electronic circuits will be briefly discussed in the next chapters.



Chapter 3

Gas Electron Multipliers

In this chapter the Gas Electron Multiplier (GEM) is introduced. We discuss the typical
geometry, electrostatics and performance with the use of the concepts in the previous chapter.
The fabrication of the GEM foils and the manufacturing limitations are briefly discussed.
Afterwards, the CMS triple GEM detector will be introduced together with a brief review of
other applications.

3.1 The Gas Electron Multiplier

The GEM detector is a new type of gas detector developed by F. Sauli in 1997 at CERN
[13]. In Fig. 3.1, a cross sectional diagram of a single GEM is shown with its basic elements.
A GEM foil is located between two parallel plates, the cathode and the anode respectively.
The volume in between is filled with gas. The upper volume is called the drift region and the
thickness hD is typically a few mm. The lower volume, the induction region has a thickness
hI which is typically one or two mm. The GEM foil, the characteristic element of this type of
detector, is made of a thin insulating polymer (kapton) sandwiched between two metal-coated
electrodes. Circular holes are perforated in the foil with a density of 50 to 100 holes mm−2.
The cross section of such a foil is shown in Fig. 3.2 and the common dimensions are listed in
Table 3.1. The holes are conically shaped due to the manufacturing process but other shapes
are also possible if other production processes are used (see section 3.3).

hD

hI

Cathode

Drift region

Induct region

Readout strips

GEM foil

VC

VA

∆VGEM

µ

Figure 3.1: Cross section of a single GEM detector with readout strips. An incident muon ionizes
the gas in the drift region producing primary electrons which drift to the GEM holes.

The electrostatic field in a single GEM detector is governed by three voltages, the drift
voltage VC , induction voltage VA and a voltage VGEM across the GEM foil. In practice, a
voltage divider is used to correctly assign the voltage over each element. The electric fields
inside the detector can either be modified by changing the voltages or the resistors in the
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Figure 3.2: Left: cross section of a GEM foil with the kapton layer colored in gray and the metal
coating in black. Right: scanning electron microscope (SEM) image [14].

voltage divider, or by changing the dimensions of the drift (hD) and induction (hI) region
thickness (the thickness of the GEM foil is assumed to be fixed at 50 µm). Typically, the
voltage over each element or region is in the order of 300 – 600 V, but the electric field is
very different because of the different dimensions. Especially the field in the GEM holes can
reach 100 kV/cm when a voltage of 500 V is applied, provided the kapton thickness is 50 µm.
The GEM voltage is limited due to the breakdown of the kapton polymer or gas discharge,
depending on the gas mixture.

Table 3.1: Typical GEM foil dimensions (units: µm). Other dimensions are possible depending on
the fabrication process (see section 3.3).

Kapton thickness (K) 50 Inner hole diameter (d) 50

Metal thickness 5 Outer hole diameter (D) 70

Pitch (P) 140 Rim 70

The behavior of the electric field lines in a GEM detector is interesting because it governs the
drift motion of the electrons and ions in the gas volume. If the electrodes are assumed to be
perfect conductors, the electric field (and field lines) must be perpendicular to the surface.
Without a GEM foil, the electric field lines are parallel to each other and perpendicular to
the anode and cathode electrodes (cfr. capacitor). The presence of the GEM foil will distort
the field only in the vicinity of the holes, as shown in Fig. 3.4(b) where the field lines are
plotted in a GEM foil hole. At a certain distance from the hole, the external field lines from
the anode-cathode are indeed parallel to each other and perpendicular to the GEM structure
whereas the external field lines are squeezed together when approaching the hole. Together
with the additional field lines from the GEM electrodes, a high field line density in the holes
is obtained resulting in high electric field. Some of the field lines inside the hole terminate
on the coated metal electrodes or on the kapton layer rather than passing through the hole
and terminating on the anode or cathode.

The central hole potential ψ(0, 0, z) along the z-axis (i.e. perpendicular to the electrodes) is
shown in Fig. 3.3(b). This plot is obtained with the ANSYS simulation tool which will be
discussed in the next chapter. The electric field along the z-axis can be calculated through
Ez = ∂zψ(x, y, z), i.e. the first derivative of the curve in Fig. 3.3(b). From this plot it is
clear that the electric field changes only at the edges of the GEM holes, i.e. at z = 2 mm
and z = 2.06 mm. Inside the both drift and induction regions and the holes, the field can be
assumed to be constant.

3.1.1 Working principle and operation

A charged particle passing through the detector can ionize the gas in both drift and induction
region. Only the primary and secondary electrons generated in the drift region will drift
through the GEM holes, where an avalanche process will start due to the high electric field.
The avalanche electrons drift towards the anode and a signal will be induced during their
drift time. The hole can be regarded as a single amplification channel with a gain depending
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Figure 3.3: GEM electrostatics: electric field lines in a GEM hole [15] (a) and central potential of a
single GEM detector (b). The GEM foil dimensions are given in Table 5.1.

on the GEM voltage and the gas mixture. The electrons liberated from primary ionizations
in the induction region will not be amplified and their induced signal can be neglected. The
ions slowly drift towards the cathode, inducing a small signal on the cathode which is spread
out over the ion drift time, typically a few µs.

The voltages on the GEM electrodes, the gas mixture and the readout electronics must
be adjusted depending on the desired quantity to measure and to achieve a high detection
efficiency. For example, high incident particle fluxes requires fast detectors which restore fast
to the equilibrium state such that the overlap in signal pulses reduced. The optimization of
the time resolution by choosing an appropriate gas mixture and a set of voltages is the aim
of the paper and is explained in Chapter 6.

3.1.2 Muliple GEM layers

The gain of a single GEM can be too low in order to induce a detectable signal, even after
adjusting the GEM voltage. By inserting multiple GEM foils in the gas volume, the gain
can be increased because the primary and secondary electrons must pass through multiple
amplification stages resulting in a higher gain. For n GEM foils installed, n GEM potentials
must be defined as well as n−1 intermediate potentials between the GEM foils. These regions
between the foils are called the transfer regions. If equal voltages are applied over the GEM
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foils and the drift, transfer and induction voltages are approximately equal, the gain can be
calculated in first order with a power law:

Gtot = Gn, (3.1)

with G the (effective) gain of one GEM layer and n the amount of layers installed. From
a simulation point of view, this approximation can reduce the computation time drastically
because only a single GEM must be calculated. In this way it is only necessary to investigate
single GEMs and extrapolate the results to multi-GEM configurations. Afterwards a final
check must be performed by calculating the total multi-GEM configuration.

3.2 GEM performance

3.2.1 Detection efficiency

The detection efficiency is defined as the probability an incident particle will induce a de-
tectable signal on the GEM readout plane. It depends on the applied voltages, the gas
mixture and the readout electronics as we will discuss in this section. After the detector
is built, the efficiency is plotted as a function of the applied voltage to obtain an efficiency
curve which has typically a sigmoid shape (see section 3.4). From these curves it is possible to
extract the voltage working point of the detector which corresponds to the desired detection
efficiency.

From chapter 2 we know that the amount of primary ionization encounters is described by
a Poisson distribution with mean L/λ, where L is the thickness of the active region and λ
the mean-free-path between two ionization encounters (depending on the gas mixture and
the charged particle). The ionization efficiency η is defined as the probability that a charged
particle will cause at least one ionization encounter in the drift region. To obtain a relationship
between η and the parameters L and λ, we first calculate the probability for zero encounters:

P (L/λ, 0) = exp(−L/λ). (3.2)

A minimum ionization efficiency η0 is obtained when:

P (L/λ, 0) = exp(−L/λ) < 1− η0. (3.3)

The minimum drift region thickness Lmin for a given λ can then be calculated as:

Lmin = −λ ln(1− η0). (3.4)

For example, the cluster density for 100 GeV muons in Argon is λ−1 = 35 /cm (see Fig. 2.1).
Hence, the minimum drift region thickness must be equal to 0.8 mm for a 95% ionization
efficiency.

Due to attachment and recombination there is a probability the primary electrons will dis-
appear before they reach the GEM hole and trigger the avalanche. These effects, of course,
affects the total efficiency of the detector and must be suppressed by choosing an appropriate
gas mixture such that the attachment and recombination coefficients are as low as possible.
Furthermore, some external field lines terminate on the top GEM metal electrode and a pri-
mary electron can be captured on this electrode yielding a decrease in the total detection
efficiency. The amount of external field lines terminating on the top metal electrode mainly
depends on the hole density, which must be high enough. A quantity related to this is the
electrical transparency. It is defined as the ratio of the field lines passing through the GEM
holes divided by the total external field lines produced by the cathode-anode. It can be
calculated using FEM software packages or with Monte Carlo simulations. In first order, the
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electrical transparency can be approximated with the optical transparency τ , defined as the
area of the GEM holes divided by the total area:

τ =
πD2

4P 2
= 0.196. (3.5)

In this calculation the dimensions in Table 3.1 were used. As a general rule, to increase the
GEM hole collection efficiency, the attachment coefficient must be as low as possible and the
amount of primary electrons must be as high as possible. This can be achieved by choosing
an appropriate gas mixture with a high cluster-size distribution, i.e. the amount of electrons
per cluster. The amount of clusters can be increased by changing the dimensions of the drift
region.

3.2.2 Effective gain

After the avalanche process, a dense cloud of electrons is located at the bottom of the GEM
hole(s). Because some field lines terminate on the kapton and bottom GEM electrode, it is
possible that the avalanche electrons will be collected on these layers, resulting in a decrease
of the gain. This amount can be very high, up to 60% of the created avalanche electrons,
depending on the electric field and GEM hole geometry. Furthermore, when electrons are not
collected but drift towards the anode, a small fraction will be attached to the gas atoms due
to attachment. This effect is only important when the attachment coefficient is very high in
the induction electric field. These processes lead to a decrease in the detector gain, and an
effective gain Geff is defined as the total collected charge at the anode, divided by the amount
of primaries. Besides statistical fluctuations, the effective gain is related to the avalanche
gain by a constant factor:

Geff = ξG, (3.6)

where ξ can only be obtained with simulations. Typical values for ξ are 0.4–0.6.

3.2.3 Charging up

Because kapton is an insulator, electrons collected by the kapton are trapped on the bottom
side of the kapton. Ions on the other hand will drift slowly upwards and some will be trapped
on the top half of the kapton. When accumulating more electrons and ions, the space charge
will distort the electric field until an equilibrium state is reached. This equilibrium state
is comparable to a charged capacitor, resulting in a higher electric field in the holes and
subsequently higher gains. It is important that this effect only appears after a certain time,
depending on the incident particle rate.

3.2.4 Energy resolution

The energy resolution is defined as the uncertainty on the pulse height at the anode due
to statistical fluctuations during the avalanche process. Measurements of the energy of the
incident particle is only possible when the particle (e.g. photons) is absorbed in the drift
region, where all its energy is deposited and converted to primary and secondary electrons.
The pulse height spectrum can be fitted to a Gaussian and the energy resolution is defined
as the FWHM at the mean peak position. Initial studies on single GEMs shows an energy
resolution of 18% at 5.9 GeV photons [13]. The experimental setup on how the energy
resolution can be measured will be discussed in chapter 5
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3.2.5 Spatial resolution

In order to achieve information on the position of the incident particle, the anode readout
plane must be fragmented in independent transverse readout planes. Both dimensions of the
fragments and the GEM hole density determine the spatial resolution, i.e. the uncertainty
to resolve the initial track position. Different methods are possible such as strips for 1-
dimensional tracking, a two-dimensional grid of tiles for two-dimensional tracking, or wires.
Excellent spatial resolutions in the order of 100 µm have been obtained with single and triple
GEMs, even in the presence of high magnetic fields (see section 3.4).

3.2.6 Time resolution

All the processes in a gaseous detector such as primary ionization, avalanche and drift, are
stochastic processes and uncertainties are introduced. Hence, it is not possible to exactly
retrieve the space and time coordinates of an incident particle, but it is only possible to
extract information within a given uncertainty range. The time resolution is a measure for
the uncertainty of the time coordinate measured by the electronics when an incident particle
is registered. Current GEM detectors have time resolutions in the order of 5–10 ns but it
is possible to achieve better time resolutions as will be discussed in the next chapters. For
such optimization it is necessary to track the electrons on atomic level and investigate the
individual uncertainties of the different processes.

3.2.7 Other advantages

As already discussed in the introduction and in the previous paragraphs, the GEM detector
combines both excellent spatial and time resolutions into one single detector which is a great
advantage because in the past the tracking and timing information was obtained by using
two detectors separately (e.g. a MWPC with a scintillator). Furthermore, high rates up to
500 kHz/cm2 could be obtained because the ions are collected very fast. Aging tests shows
no degradation of the GEM performance and could reach up to tens C/cm2 over a period
of 10 years. Because the electric field is focused in the GEM holes, GEMs could operate at
lower voltages in the order of 1–5 kV (cfr. RPCs which operate at 10 kV), reducing the power
and the noise levels. The noise is even further reduced as the readout electronics could be
separated from the High Voltage (HV) structure if the anode is grounded.

3.3 Production process

The production of GEM foils comprises different steps and is similar to the fabrication of
printed circuit boards where a photolithographic process is employed. We only explain the
single and double mask process here, which are schematically shown in Fig. 3.4. This text is
a summary of the production process as explained in [16].

The original and most common process is the double mask process. The starting point is a
50 µm kapton foil with 5 µm copper electrodes coated on both sides. Next, a photoresist
is coated on both metal electrodes. With a computer and laser techniques, two masks are
created with perforated holes according to the GEM hole pattern. The mask hole diameter
is equal to the outer GEM hole diameter. Both masks are placed on the photoresist and
optically aligned to each other with an accuracy of 5 µm. After exposing both sides with UV
light, the photoresist is removed at the holes and the metal in the holes can be removed by
etching with appropriate acids. In the last step, the kapton is etched on both sides yielding
a bi-conical hole shape.

The major problem with the double masked technique is the alignment of the both masks
on the metal layers. A precision of 5 µm allows to make small-scale foils with dimensions up
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(a) (b)

Figure 3.4: Schematic process of two common GEM foil manufacturing methods: double masked
(left) and single masked (right). Figure adapted from [16].

to 50 cm. When larger foils are needed to be produced, such as the foils for the CMS triple
GEM, another manufacturing method such as the single mask process must be used. This
process is the same as the double masked process except that only one side of the GEM foil
is masked, exposed to UV light and etched. The kapton etching yields a single conical shape
hole and a second etching of the lower metal is needed. As the metal is not covered with with
protective materials, the metal must have twice the desired thickness before the final etching
because the etching is uniform as performed in a bath of acid.

A lot of research on the production of large-scale GEM foils has been performed through the
years. With specialized etching techniques it is possible to obtain approximately a bi-conical
hole shape or cylindrical shapes [17]. Nowadays the GEM foils are industrially manufactured
and the dimensions cannot be changed.

After the production process, the GEM foil is cleaned with floating water, deionized water,
demineralized water and alcohol. The foil is dried in air at 80 degrees and the electrical
connectors are added. An Omhic test is performed where the foil must exceed around 2 GΩ.
The foil is now ready to be installed in the detector housing where it is clamped at the edges
of the detector.

3.4 The CMS triple GEM

As already explained in the introduction, new triple GEMs are proposed for installation in
the forward high η-region in CMS (GE1/1) during LS2. The present technology with RPCs
is not able to cope with the expected high radiation environment and new detectors needed
to be developed. The choice for GEM detectors was based on its properties such as high
rate capabilities, excellent spatial and time resolutions, radiation resistant and operational
in high magnetic fields. In this section, the developments of the CMS triple GEM is briefly
described. This text is based on [6], [18] and [19].
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Figure 3.5: GEM prototypes: double mask (top left), double mask with honeycomb spacers (bottom
left) and full single mask GE1/1 prototype with the 3/1/2/1 configuration during gluing
of the spacer frames (right). Figure adapted from [16].

3.4.1 Initial studies

In 2009, a research program is started to perform R&D studies on the new CMS triple
GEMs. Initially, small triple GEM prototypes were developed, measuring 10 × 10 cm2 in
two configurations: 3/2/2/2 and 3/1/2/1 mm (respectively drift, transfer1, transfer2 and
induction thickness). The readout consists of 128 strips with a pitch of 0.8 mm. The GEM
foils used were manufactured with the double mask technique and, therefore, an additional
prototype with the single mask technique is tested with an eye to the development of large
scale foils. The dimensions were 3/2/2/2 mm with 256 strips having a pitch of 0.4 mm in
two perpendicular directions. A last prototype was built with honeycomb spacers to avoid
the stretching of the GEM foils during the detector assembly. In Fig. 3.5 (left), the standard
double mask and the honeycomb prototypes are shown. However, the latter is not further
discussed here. The electronic VFAT chip developed for the TOTEM GEMs was used as
readout electronics for processing the signals. However, the readout electronics which will be
installed on the triple GEMs in 2019 are still under development (VFAT3).

The prototype GEMs were tested with a 150 GeV muon and pion beam at the CERN SPS
H4 beam line and the results are shown in Fig. 3.6. Two gas mixtures were investigated: the
standard Ar–CO2 (70–30) and the Ar–CO2–CF4 (45–15–40) mixture. A spatial resolution
of 270 µm for the first prototype (3/2/2/2) is achieved (see Fig. 3.6(a). The histogram
was fitted to a shifted Gaussian with an additional first order polynomial to describe the
noise. Furthermore, no strong influence of the spatial resolution on the gas mixture and the
dimensions was observed. However, the best cluster size distribution was obtained with the
3/1/2/1 configuration. The time resolution was measured with two scintillators serving a
trigger signal, and the spread (RMS) of the arrival time of the signals is plotted in the Fig.
3.6(b) as a function of the drift voltage. A strong dependence on the drift field is observed
and a time resolution of 4 ns is obtained with the Ar–CO2–CF4 mixture. This behavior will
become clear in chapter 6. The efficiency curves of both double and single mask as a function
of the gain are plotted in Fig. 3.6(c) and 3.6(d) respectively. An efficiency of 98% is reached
with gains above 8 kV for the double mask whereas this high efficiency for the single mask
GEM is shifted towards higher gains. We conclude that the best performances are obtained
with the 3/1/2/1 gap configuration with the Ar–CO2–CF4 mixture and almost no difference
in performance for both double and single mask foils was observed.
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(a) (b)
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Figure 3.6: Beam test results for both small CMS triple GEM prototypes: spatial resolution (a),
time resolution (b), efficiency (c) and efficiency for the single mask prototype (d).

3.4.2 GE1/1 prototype

After the successful initial results on the single mask GEMs, a large-scale triple GEM proto-
type was constructed. A trapezoidal single mask GEM with the 3/1/2/1 configuration was
built (see Fig. 3.5, right) which covers 10◦ in azimuth and equipped with readout strips
pointing towards the LHC beam pipe, having on average a pitch of 0.9 mm. To improve
tracking capabilities, two GEMs are housed face-to-face in a super chamber. Beam line test
results with a Ar–CO2–CF4 (45–15–40) are shown in Fig. 3.7. An efficiency of 98% is ob-
tained at ≈ 4200 V which corresponded to a gain of 7000 and a spatial resolution of 268 µm
is obtained. These results proved the successful R&D studies and a full prototype of this
type will be installed during the short technical winter stop in 2016–2017.

3.5 Applications

GEM detectors are also used a broad range of other applications. In the following we will
briefly discuss three main applications. For a more complete list, see [14]. Although the prin-
ciples are the same, the applications differ from the HEP particle detectors on the type and
energy range of the incident particles. Indeed, as this paper deals only with high relativistic
muons, the results are not in general applicable to other particles with a lower energy.
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(a) (b)

Figure 3.7: Beam test results for CMS GE1/1 triple GEM prototype: efficiency (a) and spatial
resolution (b).

3.5.1 Photon detection

Photons can directly be detected when the photon interacts with the gas atoms in the drift
region, liberating primary electrons. However, the interaction rate with the gas atoms is very
low, and not all the incoming photons are detected, resulting in a very low detection effi-
ciency. This can be improved by adding a semitransparant photocathode layer (e.g. CsI) at
the cathode, optionally combined with a reflective photocathode at the top metal GEM elec-
trode. The photon interacts with the photocatode and releases electrons via the photoelectric
effect. These electrons acts as primary electrons and can be detected in the traditional way.
Because of the excellent GEM properties such as position and time resolution, such GEMs
are competitors of photomultipliers (PMTs) [20].

3.5.2 Neutron detection

Neutrons cannot directly be detected in a gas medium because it is not possible to ionize
the gas atoms. It is possible, however, to use Boron (B) to absorb the neutron and trigger a
nuclear reaction:

n + B→ Li + α. (3.7)

Other conversion reactions are also possible. The α-particle has an energy in the MeV range
and can ionize the gas in the drift region, creating a detectable signal. The boron can be
present in the detector as a solid layer at the cathode or by using a gas mixture containing
boron (e.g. BF3).

3.5.3 Medical applications

GEMs are more often used in medical applications due to their good position and time
resolution. A good position resolution is required by medical imaging with soft X-rays. The
detection efficiency for X-rays can be enhanced by using photocathodes as described above,
sensitive in the soft X-ray region. The combination of the time resolution (order of 10 ns) and
the position resolution is used for example in PET scanners in order to retrieve the initial
coordinates of the positron. Decreasing both the uncertainty on the position and timing
result in an even better determination of the decay position, and hence the position of a
tumor.



Chapter 4

Simulation software

Monte Carlo simulations of particle detectors require software packages that models the
detector as well as the primary ionization and the charge transport inside the detector.
Depending on the needs and computation time, one can use different models, each operating
within a specific domain in the parameter space (e.g. energy) where the result it is accurate
and valid. For example, the primary ionization can be modeled by using the Bethe equation
or the photo-absorption ionization model. As a GEM detector has a rather complex geometry
and electric field, detailed simulations must be performed in order to have accurate results.
The purpose of this chapter is to give an overview of the simulation software tools used in
order to assess accuracy of the simulation. Different programs and algorithms are used for
each specific process which will be discussed further on.

The software package ANSYS Inc. [21] is used to calculate the potential for a fixed set of
boundary conditions, i.e. for a fixed set of voltages applied on the electrodes. Garfield++
[22] is then used for the calculations of the primary ionization, charge transport and signal
creation. This software package combines different standalone programs each taking care of
a specific process. Finally, ROOT [23] is used to analyze the results. To work efficiently with
these programs, a local simulation environment is set up which acts as an interface between
the different software packages. This will be discussed at the end of this chapter.

4.1 ANSYS

ANSYS is a broad used engineering simulation software package that is able to calculate
electronics, fluid dynamics, structural mechanics, etc. The keystone of this simulation package
is the Finite Element Method (FEM), a technique for solving differential equations in 2D
or 3D structures. Within this technique, the volume is divided in cells, the number of cells
depending on the accuracy, and the differential equations are solved inside each cell by taking
the boundary conditions into account. The boundary conditions depend on the of quantity of
interest (e.g. electric or magnetic field) and follow from the underlying theory. The solution
is then obtained by minimizing a functional by using variational methods. In the case of
GEM detectors, the potential ψ(r) is calculated in ANSYS from where the electric field can
be derived: E = −∇ψ(r). The FEM elements are 10-node-tetrahedrons with curved sides
and the potential is solved by expanding ψ(r) in polynomials of order n. This results in a
less accurate field calculation as the field will be described with a polynomial of order n− 1.

4.1.1 GEM unit cell

Solving the potential in the complex GEM geometry requires in the first place a detailed
formulation of the geometry and the materials used. For the electrostatic calculations, it is
assumed the GEM detector is infinitely spread out in the plane of the GEM foil. From the

35



36 CHAPTER 4. SIMULATION SOFTWARE

x
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Figure 4.1: Top view of the GEM foil. The unit cell is indicated with a gray box containing half a
GEM hole, with a thickness equal to the total GEM thickness.

staggered hole positions in the GEM foil, a periodic rectangular unit cell structure can be
defined. In Fig. 4.1, the top view GEM foil is plotted and an (x, y)-coordinate system is
defined. The origin of the cell is defined as the midpoint of one hole, the opposite side has
coordinates (P/2,

√
3P/2), because the diagonal of the projected cell is equal to the pitch P .

In the z direction, the unit cell is limited between the drift plane at z = 0 and the readout
plane at z = dtot. For a single GEM, the total thickness z = dtot is equal to:

dtot = hD + hI +K + 2dm, (4.1)

with hD the drift region thickness, hI the induction region thickness, K the kapton thickness
and dm the metal thickness. For multi-GEMs with n layers, the total thickness consists n
times the metal-kapton-metal layer, the drift and induction region thickness and the n − 1
transfer region thicknesses.

4.1.2 Input file

There are two ways to define the unit cell geometry in ANSYS. The first one is the Graphical
User Interface (GUI) where the unit cell must be constructed by drawing the cell in 3D. It is
also possible to import geometries from AutoCAD drawings, a method which is more common
for civil engineering purposes. The other method is by writing a script with predefined
ANSYS instructions. These instructions allow to make elementary volumes such as blocks,
cylinders, cones, etc. The instructions must be written chronologically in a text file and
must be imported in ANSYS, which reads the instructions and compiles the geometry. For
geometries such as the GEM detector this method is the most suitable. The advantage of
this script method is that the whole detector can be described within one text file, including
the voltage boundary conditions and materials properties. The rather complex structure
of the predefined instructions may be a disadvantage of this method because no visual aid
is available. However, the script can be tested line by line to debug or adjust. We will
now discuss the principle on how to define the geometry with text and figures in order to
understand ANSYS. A complete input file describing a single GEM with explanation can be
found in Appendix A.

The ANSYS instructions allow to create elementary volumes. To define the GEM unit cell
from such elementary volumes, we first define the gas volume as a rectangular box enclosing
the total unit cell. At the center of this block, three small blocks are added defining respec-
tively the top GEM metal layer, the kapton and bottom metal layer (see Fig. 4.2(a)). Two
quarter GEM holes at opposite side must be subtracted from the metal-kapton-metal layer.
Referring to Fig. 3.2, only the kapton layer is conical shaped whereas the metal layers are
straight. Hence, to subtract such a double conical shape from the kapton, two cones with
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(a) (b) (c)

Figure 4.2: Elementary composed ANSYS volumes: metal-kapton-metal layer embedded in the gas
volume (a), to be subtracted GEM holes (b) and total metal-kapton-metal layer with
subtracted holes (c).

inner (d) and outer (D) radius must be created at the common GEM hole axes. Further-
more, two discs or flat cylinders with radius equal to the rim-value must be subtracted on
both metal layers. These volumes, both cones and both cylinders are shown in Fig. 4.2(b)
(left). After subtracting these volumes from the metal-kapton-metal layer, one obtains the
result as shown in Fig. 4.2(c) (right). The anode and cathode metal electrodes does not have
to be defined geometrically as they can be handled with the boundary conditions (see next
section). After the subtraction, the conical and cylindrical volumes are removed, resulting in
a complete described unit cell consisting of four volumes: the gas volume, two metal volumes
and one kapton volume. The gas volume is shown in Fig. 4.3, where a rectangular coordinate
system is introduced for further use.

4.1.3 Boundary conditions and electrostatic solution

To compute the potential ψ(r), the volumes must be assigned to materials with a relative
permittivity εr. The gas volume can be considered as vacuum (εr = 1) whereas kapton has a
relative permittivity of εr = 4. The metal layers on the GEM foils are assumed to be perfect
conductors with very high permittivity. A value of εr = 1010 is used in the simulations.
Also the electrodes at the drift and induction planes are treated as perfect conductors. The
voltages on the metal electrodes must be given as boundary conditions in order to solve the
field. An additional boundary condition is that the electric field must be perpendicular to
the metal surfaces, a consequence of the infinite conductance of the electrodes. The material
properties and the voltages must also be defined in the input file as well as the periodic
boundary conditions in the (x, y)-plane.

The solution of the potential is shown in Fig. 4.4. The drift and induction region shows only
a small linear variation of ψ(r) in the z-direction and electric field is then nearly constant
in these regions. Large variations are present in the GEM hole region, together with an
increased cell density for more accurate results, resulting in a strong non-uniform electric
field. The field lines have a shape according to Fig. 3.4(b).

The weighting field or potential can also be computed when all the electrodes are set to zero
potential, except the electrode of interest. This electrode is set to potential one and the
potential is solved.
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Figure 4.3: The gas volume unit cell with subtracted GEM holes in the middle. A rectangular
coordinate system is introduced as shown.
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Figure 4.4: Computed potential ψ(r). The scale accuracy does not correspond with the actual
accuracy of the potential. The white lines in the volume defines the boundaries of the
FEM elements.
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Figure 4.5: Garfield structure [25].

4.1.4 Output files

When the electrostatic field is solved, a field map can be saved containing the information
about the FEM cells and the potential. In general, four output files are generated:

• ELIST.lis: contains the mapping of the FEM elements;
• NLIST.lis: the coordinates of the nodes are stored;
• MPLIST.lis: the materials are defined with their properties;
• PRNSOL.lis: the potential in each node is stored.

Typically for a single GEM, around 10000 elements are created together with 15000 common
nodes. The FEM elements are more concentrated in places where large structural variations
are present. The weighting field produces additional an additional .lis file containing the
nodal solutions of the potential. The field map and FEM elements are the same.

4.2 Garfield ++

Garfield++ is a software package used for detailed simulations of gaseous and silicon particle
detectors. The first version was released in 1984 under the name Garfield [24]. It was origi-
nally written in FORTRAN and was only capable to simulate gaseous detectors. Garfield was
updated and ported to C++ at the end of the nineties and the possibility to simulate semicon-
ductor detectors was added. This gave rise to the birth of Garfield++, a complete simulation
tool for modeling of primary ionizations up to signal processing. Different algorithms are
incorporated and a large flexibility is built-in to adjust the algorithms and the simulation
environment. It is necessary to understand the basic principles behind the simulations, which
we will describe in this section. A complete review can be found on the website, the user
manual [25] and the source code.

An overview of the Garfield++ class structure is given in Fig. 4.5. The program and classes
rely heavily on the ROOT software package, a simulation and analysis tool developed at
CERN. In a first step to simulate a gas detector, the geometry must be defined. For simple
geometries such as parallel plate detectors, it is possible to draw or define the detector with
the use of ROOT classes. More complex geometries such as GEM detectors must be, together
with the electrostatics, loaded from the ANSYS output files. The FEM elements are parsed
such that the GEM unit cell is loaded in Garfield++. Afterwards, an active medium or gas
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volume must be assigned which can be characterized by its permittivity (εr = 1 for the gas
volume). Only the active medium is used for the simulation and the other volumes (the
metal and kapton layers) are neglected because no transport models are available in solids
(except for semiconductors). A gas mixture can then be assigned to the gas volume via the
Magboltz class, which is a link between Garfield++ and the standalone Magboltz simulation
tool (see 4.2.2). The component class combines both the geometry and gas medium classes
into a single description of the detector including the electric field. For simple geometries the
field can be calculated analytically whereas for GEM detectors the potential is loaded from
the ANSYS ouput files and the field is calculated by E = −∇ψ(r). If necessary, multiple
field solutions (e.g. E and B) can be added in separated Component objects, as the field
equations are linear and the superposition principle is valid. Once the geometry and the fields
are combined in a Component object, the Track (4.2.1) and charge transport (4.2.3) classes
can be used to simulate the primary ionization and the transport of the primary electrons
respectively. The connection between these classes and the Component class is achieved by
the Sensor class. The Sensor class is the global class connecting all the different sub-classes
and allows to calculate the induced signals and perform convolutions with transfer functions.

4.2.1 HEED

HEED is an abbreviation for High Energy Electrodynamics, a standalone simulation tool
written by I. Smirnov (originally in Fortran, later in C++) [26]. This program simulates
the primary ionization process in detail according to the Photo-Absorption Ionization model
described in section 2.2.1. More specific, it is able to calculate the following interesting
quantities:

• gas parameters such as the cluster density, W -value and the stopping power;
• location of ionization clusters and energy transfer per cluster;
• position of the primary and secondary electrons from δ-electrons.

A wide selection of incident particles is available such as muon, pions, electrons positrons,
α-particles, etc. For photons, no clusters are calculated but rather the position of the primary
electrons. It is not possible, however, to calculate the energy of the primary and secondary
electrons because the detailed transport of δ-electrons is not yet implemented in HEED.
Hence, energy of the primary and secondary electrons is set to zero.

HEED relies intensively on photo-abosorption cross sectional data for the different particles
and gas mixtures ranging over a wide energy interval. In the discussion and formulas of the
PAI model, the cross section is assumed to be the total photo-absorption cross section for
a given atom, averaged over the electrons present in the atom. To make the simulations
more accurate, HEED uses individual electron cross sections depending on the electron shell,
conducted from different experiments. As a consequence, it is assumed that the energy from
the charged particle is completely absorbed by a single electron rather than the atom. The
photo-electron is emitted with an energy equal to the energy transfer minus the binding
energy of the electron. The excited atom will release a photon or an Auger electron.

The accuracy of HEED is discussed in the main paper [26] where the simulations are carefully
compared to experimental results. For example, the cluster density is simulated and compared
with experimental data for pions, protons and electrons over an energy equivalent to βγ = 105.
The simulations are in agreement with experimental curves with high accuracy.

4.2.2 Magboltz

Magboltz is a standalone program written in Fortran by S. Biagi [27]. It allows to calculate
the transport parameters such as the drift velocity, Townsend coefficient, diffusion coefficients

http://heed.web.cern.ch/heed/
http://magboltz.web.cern.ch/magboltz/
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and the attachment coefficient in the presence of electric and magnetic fields. A Monte
Carlo integrator is used to solve the Boltzmann transport equation in detail, by assuming a
third order Legendre expansion of the probability density function f(r,p, t). This allows to
calculate the drift velocity within an accuracy of 1%. The Monte Carlo integrator consists
of a test electron which is released in a hypothetical gas medium where the electric field is
aligned with the z-axis. After each collision with the gas atoms, the state (position, energy
and direction) of the electron is updated. The solution of the Boltzmann equation converges
to an equilibrium value after typically 107 collisions. The transport parameters are then
extracted from the behavior of the electron during the simulation.

When the Magboltz program is called, the gas composition, the electromagnetic field and the
environmental parameters such as pressure and temperature must be defined. The Magboltz
simulation tool calculates the different transport parameters within the given configuration.
The calculations can be repeated over a range of electric fields, and the results are stored
in a gas table. The gas table can later be used to use in Garfield simulations or to plot the
transport parameters as a function of the electric field.

Also Magboltz relies on atomic data cross sections to handle the collision energy transfer. All
the cross sections of the processes which could occur must be taken into account: ionization,
excitation, rotational and vibrational cross sections. A large database of cross sections is
available online and is updated regularly (see for example [28]). The Magboltz simulation
results are shown to be very accurate for electric fields up to 10 kV/cm, according to the
discussion in the main paper. For higher fields, the accuracy depends on the energy range
of the available cross-sections. In general, it is accepted that Magboltz produces reasonable
results because it is able to successfully simulate GEM detectors where high fields are present
(see section 5.3).

4.2.3 Charge transport

For electrons, two mechanisms are available to calculate the transport. The first one, named
Avalanche Microscopic, uses the Magboltz interface to track the electron on atomic level. This
method is by far the most precise but is time consuming when a large amount of electrons
must be tracked. The second method is a macroscopic Monte Carlo integration by stepping in
time, using the equation ∆s = vd∆t for the drift and σ = D

√
∆s for the standard deviation

for the diffusion. The attachment and avalanche processes are also treated on macroscopic
level. For ions, only the Monte Carlo technique is available. For more information, see the
Garfield++ user manual.

4.3 Local simulation environment

From the previous discussion about the simulation tools it became clear that when large-scale
simulations have to be performed, an local environment has to be set up in order to efficiently
perform the simulations. It is necessary to have a flexible connection between the different
simulation tools (ANSYS and Garfield++) and between different computers available to
perform the calculations. At the beginning of this thesis, such a simulation environment is
conceived and elaborated.

4.3.1 Computer power

The simulation of the processes with Garfield can be a very computer intensive task. Es-
pecially the calculation of the electron avalanche processes, electron drift and transport pa-
rameters are very time consuming and cannot be executed on a classical computer. Care
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has been taken, where possible, to reduce the computation time based on physical valid as-
sumptions. For example, in this paper we report only single GEM calculations from where
results for double or triple GEMs can be deduced, if needed, by extrapolating methods. The
computation time scales with a power law because the amount of electrons on average rises
according to a power law and it is not practical to calculate double and triple GEMs for
timing optimization purposes. However, the extrapolation has to be verified with a final
simulation.

The calculations in this paper were performed on two supercomputers. The first one, the
CERN computing grid, was mostly used for the general calculations. The Garfield C++ were
submitted into a queue with the use of bash job scripts. Furthermore, the CERN grid has
a command-line based ANSYS 15.0 program which was used to calculate the electrostat-
ics. For visualizing the ANSYS geometries, ANSYS 14.5 available at Ghent University was
used. The electron transport parameters for different gases were computed on the STEVIN
Supercomputer Infrastructure at Ghent University, funded by Ghent University, the Flem-
ish Supercomputer Center (VSC), the Hercules Foundation and the Flemish Government –
department EWI. A set of 7 programs were calculating simultaneously the gas files for dif-
ferent types of gas mixtures. The transport parameters were extracted afterwards on a local
computer.

4.3.2 ANSYS input file generator

The flexibility to simulate different GEM geometries and electrostatics is limited by the
relative complex structure of the ANSYS input files. Indeed, by changing a single parameter
(e.g. thickness), the whole ANSYS file has to be modified. Especially when adding more
GEM layers, the input file becomes enormous complex (per GEM layer, about 150 lines
must be added). Another difficulty is the internal ANSYS volume numbering system which
becomes very complicated when adding more GEM layers. Therefore, a program was written
in HTML/PHP which automatically generates an ANSYS input file, including code for the
calculations weighting fields on the anode and the cathode. Because we are not interested in
the position of the arrival electrons, the anode readout strips are converted into one readout
plane.

A screenshot of this script, captured in a web browser, is shown in Fig. 6.1. The reason
why this script is written in HTML/PHP is because it is easy to implement a graphical user
interface from where the GEM settings can be inserted. The first setting allows to define
the total GEM layers. The input fields for the transfer voltages, transfer thickness and GEM
voltages automatically increases when more GEM layers are selected. In the next fields, the
GEM foil characteristics can be defined where the default foil configuration is already loaded.
The remaining fields are the drift, induction and transfer dimensions and electrostatics. Once
the GEM configuration is inserted, the script generates the ANSYS input code and displays
it on the screen. Moreover, three files are created:

• GEM.inp: ANSYS input file for the electric field calculations;
• geometry.txt: text file containing the geometrical information;
• volumes.txt: a list with all the volumes created by ANSYS.

The GEM.inp file can be directly imported in ANSYS and the electrostatics can be calculated.
The second file, geometry.txt contains all the geometric properties and voltages in a human
readable format. It is necessary to have the GEM dimensions in Garfield++ and therefore
a function is written which loads the contents geometry.txt into C++ variables. The file
volumes.txt consists of information about the ANSYS volume numbering system which can
be useful for debugging purposes.
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Figure 4.6: The ANSYS file generator, written in HTML/PHP.

4.4 Source code

The complete source code used in the entire project is published on GitHub, available at
https://github.com/jeyserma/GEMSimulations. The structure of the code and the source
code files are summarized in Appendix B.

https://github.com/jeyserma/GEMSimulations




Chapter 5

GEM simulations and measurements

Both theoretical definitions and formulas introduced in chapter 2 and the technical GEM
details in chapter 3 are now discussed with the use of simulations and measurements. It is the
aim to analyze the simulation results for the individual processes such as primary ionization,
charge transport, charge amplification and signal creation. These results are necessary to
understand the shape of the signal pulse, from which the time information can be extracted.
We continue this discussion by reporting experimental results on energy calibration and gain
performed on a CMS triple GEM prototype. This is useful in the last section where the
simulation results are compared to experimental gain results.

5.1 Single GEM simulations

A single GEM detector is used to discuss the general simulation results rather than a triple
GEM in order to reduce the computation time. The dimensions are listed in Table 5.1. A
gas mixture of Ar–CO2 is used with a composition of 75–25% at standard temperature and
pressure (STP, i.e. p = 1 atm and T = 293.15 K). Muons with an energy of 100 GeV
are perpendicularly incident on the detector at r0 = (0, 0, 0), according to the coordinate
system defined in section 4.1. The Penning transfer coefficient fp = 0.57 is applied for the
correction of the avalanche growth. In order to increase the statistics, the simulation has
been repeated over 100 iterations. Although the transport of the ions is incorporated with
the Monte Carlo stepping algorithm, we will not incorporate them in this discussion. As will
be shown in section 5.1.4, the ion contribution of the induced signal is spread out over a long
time interval and can be neglected.

Table 5.1: Single GEM dimensions and electrostatics used in this section.

Drift region thickness 2 mm Inner hole diameter 55 µm

Induct region thickness 1 mm Outer hole diameter 85 µm

Pitch 140 µm Rim 85 µm

Kapton thickness 50 µm Metal thickness 5 µm

Vdrift 270 V Edrift 1.35 kV/cm

Vinduct 400 V Einduct 4 kV/cm

VGEM 460 V EGEM 92 kV/cm

5.1.1 Gas properties

In the following discussion the gas properties are frequently used to explain the results of
the simulation. For ease, the simulated gas properties are listed in Table 5.2. The ionization
parameters were calculated with HEED for 100 GeV muons whereas the transport parameters

45



46 CHAPTER 5. GEM SIMULATIONS AND MEASUREMENTS

E field [kV/cm]

0 5 10 15 20 25 30

m
/n

s]
µ [ dv

0

20

40

60

80

100

120

Ar-CO2-75-25

Figure 5.1: Simulated electron drift velocity composed with Magboltz for Ar–CO2 (75–25) as a
function of the electric field.

were calculated with Magboltz for electric fields up to 100 kV/cm. A plot of the drift velocity
is shown in Fig. 5.1 for the electric fields of interest, from which the drift velocity in the drift
and induction region can be extracted. Furthermore, the Townsend coefficient α at the GEM
hole electric field was calculated and given in the table. The maximum attachment coefficient
was calculated to be around 6.5 cm−1 at E = 18 kV/cm and can be neglected w.r.t. α in the
high electric field region (i.e. GEM holes).

Table 5.2: Calculated ionization and transport parameters for Ar–CO2 (75–25).

Ionization parameters Transport parameters

λ−1 37.78 cm−1 vd(E = Edrift) 45 µm/ns

dE/dx 3.05 keV/cm vd(E = Einduct) 70 µm/ns

W -value 27.76 eV α(E = EGEM) 1850 cm−1

Imin 13.79 eV ηmax 6.5 cm−1

5.1.2 Primary ionization

HEED was used to calculate the primary ionization encounters, cluster positions, cluster size
distributions, etc. Because delta electron transport is not fully integrated in the algorithm
(see section 4.2.1), the primary electrons have zero energy. It is possible to assign a value for
the primary electron energy according to a certain distribution, provided the energy is lower
than the lowest ionization potential Imin of the gas (otherwise new secondary ionizations
could occur). However, such approach was not incorporated in the simulations because the
initial electron energy (typically a few eV) is negligible as the mean electron energy is only
governed by the electric field.

The results of the primary ionization are shown in Fig. 5.2. A first quantity to discuss is
the amount of clusters created, described by a Poisson distribution with a mean µ = L/λ.
For this configuration L = ddrift = 0.2 cm and λ−1 = 37.78 cm−1, yielding a mean of 7.556
clusters. This is in good agreement with the simulated value µ = 7.66 (see Fig. 5.2(a)).
A slightly higher mean value equal to 8.521 is obtained when the distribution is fitted to a
Poisson distribution. From the distribution of the z-coordinate of the clusters, plotted in Fig.
5.2(b), it is clear that the clusters are nearly uniform spread over the drift region. Because
most of the primary electrons are liberated in the vicinity of the cluster position (except
δ-rays), the primary electrons are nearly uniform distributed over the drift region. In Fig.
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Figure 5.2: Primary ionization simulations results: total cluster distribution (a), cluster-size dis-
tribution (b), z-coordinate of the clusters (c) and energy transfer Ec to the primary
electrons per cluster (d).

5.2(c) the amount of electrons per cluster ne, or the cluster-size distribution is plotted up to
ne = 6. In most of the clusters one or two electrons are liberated but there is a probability
to liberate more than two electrons yielding a mean of 〈ne〉 = 2.884 electrons. Indeed, due to
δ-rays (having energies in the order of keV) the amount of liberated electrons can be in the
order of 10–200 electrons. The mean number of electrons depends on the gas mixture (and
the incident particle) and is preferably as high as possible to have many primary electrons
per cluster to maximize the signal.

In general, the amount of liberated electrons per cluster depends on the energy transfer Ec per
cluster from the charged particle to the gas atoms, shown in Fig. 5.2(d). The distribution is
terminated at Ec = 100 eV, though higher values due to δ-electrons are present but not shown
in the histogram. The cut-off at low energies is equal to the minimal ionization potential
Imin = 13.79 eV because lower energy transfers will not induce (primary) ionizations. The
mean value 〈Ec〉 ≈ 79.77 is related to the W -value as follows. Because 〈Ec〉 is the mean
energy transfer to one cluster, the mean energy transfer to a single electron is given by
〈Ec〉/〈ne〉 = 27.66 ≈W . The energy of the primary electrons is then equal to the individual
energy transfer1 minus the binding energy of the liberated electron. It is possible that a
primary electron has an energy above Imin which can cause further ionizations on its path
in the drift region. In such a case, the initial energy of the electron is distributed over a few
secondary electrons until the energy of the secondary produced electrons is lower than Imin

(the transport of δ-electrons is analogue but more secondary electrons are produced). The

1HEED is able to calculate the per-electron energy transfer, which was not originally implemented in the
PAI model.
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Figure 5.3: (x, y)-distribution of the ionization processes without the primary ionization. The red
dots indicates ionization in the drift region, the black dots in the GEM holes and the
blue dots in the induction region. Note that the data of the histogram contains 100
initial events.

drift field is assumed to be too weak in order to increase the electron energy above Imin and
no further ionizations will occur. This result is shown in Fig. 5.3, where the (x, y) coordinates
of the ionization positions are plotted in a two-dimensional histogram for each region (drift,
holes, induction). Ionizations in the drift region are colored in red.

The mean amount of electrons liberated in one event is equal to 〈ne〉 ·L/λ = 2.675 · 7.84 =
22.61, i.e. the average amount of electrons per cluster times the average amount of clusters
in the event. This number can easily be calculated with the stopping power and the W -
value, according to Eq. 2.4. From the stopping power, the average energy deposit of one
muon in the drift region is equal to Q = dE/dx · ddrift = 610 eV, yielding an average of
〈n〉 = Q/W = 21.97 electrons. This is in close agreement with the simulated value.

5.1.3 Charge amplification and effective gain

The primary and secondary electrons drift to the GEM holes following the drift lines. As
already discussed in the previous section, energetic electrons can induce a little amount of
ionization on their path, as shown in Fig. 5.3 with the dots. Once arrived in the holes, the
strong electric field will induce an avalanche, shown as black dots on the figure. In this ideal
scenario where the muons are perpendicularly incident at the origin, the transverse (x, y)-
distribution is nearly symmetric around the central hole. The avalanche-size distribution is
shown in Fig. 5.4, containing a total of 2167 avalanches. This number corresponds to the
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Figure 5.4: Avalanche-size distribution induced by primary and secondary electrons. The distribu-
tion is fitted to a Polya distribution.

mean number of primary and secondary electrons, being 22, multiplied by 100 events. The
distribution reflects the variation of the avalanche or the gain variation and is described with
a Polya distribution with mean µ = 167.6 and RMS σ = 136.5. After fitting to a Polya
distribution (see Eq. 2.31), the mean is equal to µ = 166.5 and α = 1.482, yielding an RMS
of σ = µ/

√
α = 136.77, in good agreement with the simulated values. The gain fluctuations

are indeed well described with a Polya distribution, despite the fact that the distribution was
originally derived for wire chambers.

The drift of the electrons in each avalanche is governed by the electric field in the hole and
induction region. As discussed in section 3.2.2, the field lines do not always terminate on the
anode but also on the kapton and GEM metal electrodes. As a result, the z-coordinate of
the arrival electrons is spread over the anode and the metal-kapton-layer, as shown in Fig.
5.5(a). In this histogram, the arrival z-coordinate of the electrons is plotted and one can see
that only a minority will reach the anode at z = 0.306 cm. A complete list of the arrival
electrons, including attachment in the induction region, is given by:

• anode electrons (signal): 40.484%,
• kapton electrons: 3.8%,
• attachment in drift region: 2.588%,
• top GEM electrode electrons: 0.001%,
• bottom GEM electrode electrons: 53.065%.

Only 40.484% of the produced avalanche electrons will drift towards the anode and induce a
signal. Indeed, the other electrons are captured very fast on the GEM electrodes or on the
kapton, inducing a negligible signal. As a result, the total gain will be lower and the effective
gain can be calculated as (see Eq. 3.6):

Geff = ξG = 0.40484 · 171.2 = 69.31. (5.1)

In Fig. 5.5(b), the initial z-coordinate of the avalanche electrons is plotted in GEM holes.
The hole starts at z = 2000 µm and ends at z = 2060 µm, and it follows that most of
the electrons are produced in the lower region of the GEM hole. This can be seen from
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Figure 5.5: z-coordinate of the arrival electrons after the avalanche (a), close-up of the initial elec-
trons produced in the GEM holes (b) and (x, y) spread of the electrons arriving at the
anode readout plane (c and d).

the Townsend equation (Eq. 2.28), which can be solved if we assume a constant Townsend
coefficient α:

N(z) = N0 exp

(∫ s=z

s=z0

α ds

)
= N ′0 exp (αz) , (5.2)

with N0 the initial amount of electrons and N ′0 the amount of electrons at z = 2000 µm. The
exponential behavior is clearly visible in the interval 2000 ≤ z ≤ 2060 µm. For z > 2060 µm,
the magnitude of the electric field is lower, resulting in a decrease of Townsend coefficient
and the amount of produced electrons decrease. At z = 2095 µm, the Townsend coefficient
is zero and no additional electrons are produced.

One last interesting result to investigate is the transverse spread of the arrival electrons on
the anode. For both x and y directions, the distributions are shown in Fig. 5.2(c) and 5.2(d)
respectively. Due to the symmetry, the mean of both distributions is almost equal to zero.
The RMS of the distributions is related to the position resolution because readout strips with
transverse dimensions equal to the RMS value is the upper limit to determine the position
of the incident muon. An RMS of 120.3 µm is obtained and proves the excellent position
resolutions that can be achieved with GEM detectors. It must be stressed that these results
are obtained with perpendicularly incident muons yielding an absolute minimum of the RMS
value. Non-perpendicular muons will spread out the avalanche in more holes, resulting in a
higher RMS value.
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5.1.4 Signal creation

According to the Shockley-Ramo theorem, a signal will be induced on the anode during
the time the swarm of electrons created in the avalanche drift from the GEM hole to the
anode. The induced signal from the drift of the primary and secondary electrons towards
the GEM holes is negliglible because the charge is masked by the top GEM foil. A single
electron drifting towards an electrode will induce a constant current in time, provided the
electric field and the drift velocity is constant (see Eq. 2.38). This is valid in the induction
region, where the electric field and thus the drift velocity can be regarded as constant (see
Fig. 3.3(b)). To investigate the signal, we start by simulating the induced current from a
single electron in the drift region with initial coordinates r0 = (0, 0, ddrift/2), zero energy and
a random velocity direction. This electron can be regarded as a primary electron, drifting
towards the GEM holes and producing ne electrons in the avalanche. The induced signal is
shown in Fig. 5.6(a), where the collected charge in bins of 0.5 ns is plotted in an histogram.

The induced current is negative because the motion of the electrons is opposite to the electric
field, yielding E ·v < 0 and thus I(t) < 0. The shape of the pulse can be regarded as a block
pulse, which is in agreement with the Shockley-Ramo theorem where a constant current is
expected due to the drift of the electrons in the induction region. The timing characteristics
of this pulse can be calculated from the drift velocities of the gas. Time zero (t0 = 0) is
defined as the time when the electron is released at its initial position. The signal only
appears at t1 = 19 ns, which is approximately equal to the time needed for the electron to
drift towards the GEM hole:

∆t1 = t1 − t0 =
ddrift/2

vd,drift
=

0.1 cm

45 µm · ns−1 = 22.22 ns. (5.3)

This calculated value is a few ns higher than the actual signal time t1 because the electric
field increases when approaching the GEM hole. The drift velocity increases when the field
increase (see Fig. 5.1), resulting in a lower drift time. The time needed to develop the
avalanche and the drift inside the GEM hole can be neglected in first order as the drift
velocity is very high and the GEM foil is very thin. From the figure, the signal stops at
t2 = 34 ns, yielding a total width of 15 ns. The duration of the induced signal is equal to the
time needed for the avalanche electrons to drift to the anode and can be calculated as:

∆t2 = t2 − t1 =
dinduct

vd,induct
=

0.1 cm

70 µm ·ns−1 = 14.29 ns, (5.4)

which is in good agreement with the simulated value. The height of the pulse is proportional
to the collective charge created in the avalanche and to the product E ·v. The electrons
collected on the GEM foil do not induce a noticeable signal on the anode because they are
collected very fast. From this discussion we can conclude that the induced signal of a single
primary or secondary electron is block shaped, with a time offset determined by the drift
velocity in the drift region and its initial position, a width determined by the induction
region drift velocity and a height proportional to the avalanche size and the induction field.

In a a more realistic scenario, multiple primary and secondary electrons almost instanta-
neously created in the drift region and drift towards the GEM holes, each triggering an
avalanche and inducing a current on the readout electrode. The total induced charge is a
superposition in time of the individual induced charges. The individual block pulses will in
general overlap and a random signal is induced depending on the drift velocities and the ini-
tial primary electron coordinates. For example, in Fig. 5.6(b), the induced signal is plotted
when primary electrons at (0, 0, 0.3 · ddrift), (0, 0, 0.5 · ddrift) and (0, 0, 0.7 · ddrift) are simulta-
neously released. Three pulses having equal widths overlap symmetrically and four plateaus
(four different overlaps in total) are visible, as expected. In Fig. 5.6(c), a pulse resulting
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Figure 5.6: Induced signal from a single electron in the drift region (a), induced signal from three
electrons in the drift region (b), random pulse from an incident muon (c) and the con-
voluted signal with the VFAT3 transfer function (d).
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from a perpendicularly incident muon is shown. Multiple primary electrons distributed over
the drift region each contributes to this signal with different time offsets and gains, resulting
in a random pulse. To characterize such a random pulse, the following quantities can be
extracted:

• the time offset ∆t1,
• the width of the pulse ∆t2,
• the mean and
• the RMS of the pulse.

The ions also induce a current on the anode from the time they are produced in the avalanche.
However, because the ion drift velocity is several orders lower than the electron drift velocity,
the total width of the ion induced current is in the order of µm. Due to charge conservation,
the areas under the electron pulse and the ion pulse must be equal to each other and the
amplitude of the ion signal is several order lower than the electron signal and can be neglected.

For completeness, the convoluted signal of 5.6(b) is shown in Fig. 5.6(d). The transfer
function applied is the VFAT3 transfer function2, given by [29]:

H(s) = 0.46G

(
s

s0

)3

exp(−3s/s0), (5.5)

with G ≈ 2 the gain of the last differential stage and s0 = 27.5 if the peaking time is 25 ns.
The shape is characteristic for detector electronics as all of them use the same building blocks
such as amplifiers and integrators. Depending on the desired measurement, the electronics
can be modified to adjust the signal pulse such as the gain, peak and rise time.

5.2 Gain measurements and energy calibration

In this section, the gain of a CMS triple GEM prototype is measured together with the energy
calibration using a photon source. This is useful to understand the interactions of photons
in the drift region and how GEMs are practically operating. The same experimental setup
is used in the next section were the simulation results are compared to experimental gain
measurements.

5.2.1 Experimental setup

The triple GEM detector is a small prototype measuring an area of 10×10 cm2 and having
a two-dimensional grid of readout strips at the readout plane. Because no position measure-
ments were performed, the strips were electrically connected to each other acting as a single
readout plane connected to the electronics. A static gas mixture of Ar-CO2 was used with
a composition of 70-30%. Instead of the traditional double-mask production process for the
GEM foils, here a single masked GEM foil was used which was manufactured at CERN. Care
has been taken during the production process to obtain approximately the bi-conical hole
shape with its standard dimensions. The separation of the gaps is 3:1:2:1 mm, beginning
with a drift region of 3 mm. The electric fields over the gaps and GEM foils were established
by using a voltage divider with resistor values of respectively 1.25, 0.5625, 0.4375, 0.55, 0.872,
0.525 and 0.625 MΩ. A High Voltage filter of 0.3 MΩ was installed at the beginning of the
voltage divider, before the connection to the drift plane. This results in a total resistance
of 5.112 MΩ. The total voltage across the GEM was controlled by a CAEN High Voltage
power supply, ranging from 3 kV up to 3.5 kV. Between the branches of the voltage divider,

2The VFAT3 chip is proposed as the readout chip for the CMS triple GEM detector but is still under
development.
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Figure 5.7: Schematic overview of the electronics used to measure the spectrum and the operating
plateau. To measure the gain, a picoamperemeter was directly connected to the GEM
anode.

a resistor of 10 MΩ was placed in order to correctly drain the collected charge on the GEM
metal foils. The entire setup was housed in a box covered with soft copper plates for reducing
external electronic noise.

The source used in the experiment was a Fe-55 source, emitting X-rays with a main energy
peak at 5.9 keV. The strength was approximately 2.5 MBq which is equivalent to 2.5 decays
each ns. The photons were emitted isotropically from the source and only a small fraction
of the total solid angle reaches the detector, yielding a radiated area in the order of 0.5 cm2.
Hence, the photon rate incident on the detector is much lower than 2.5 per ns.

The electronic setup for measuring the energy spectrum and the operating plateau is shown
in Fig. 5.7. The first stage is the preamplifier and shaper. This device amplifies the very
weak current from the GEM and shapes the signal. It was located directly behind the GEM
readout inside the copper box. Because the preamplifier contains a capacitor, the charge
must be drained in order to avoid saturation when the capacitor is fully charged. Hence,
a resistor of 100 kΩ is placed between the GEM readout and the preamplifier. A second
amplifier is located after the preamplifier. The pulse shape is shown in Fig. 5.8(a), recorded
with an oscilloscope, connected directly after the second amplifier. Both amplifiers were
adjusted to optimize the signal-to-noise ratio. The noise increases with higher voltages and
the signal-to-noise ratio must be optimized with the applied voltage of 3.5 kV. As can be
seen from the figure, the noise (superimposed on the signal) is minimized and the signal is
clearly visible. After the amplifier, different electronics are used depending on the type of
measurement. For measuring the operation plateau, a discriminator and counter was used.
For measuring the spectrum, a multichannel analyzer (MCA) was used which is connected
to the computer whereas for measuring the gain a picoamperemeter was used.

5.2.2 Operating plateau and interaction rate

In order to calculate the gain of the detector, the photon interaction rate R with the gas
medium must be known. Indeed, the detector is not designed for single photon detection and
not every incident photon will interact with the gas medium. From simulations it follows that
for a 3 mm drift region thickness and a Ar–CO2 (70–30) gas mixture, only 20% of the photons
is converted in the drift region or 3 mm. The photon energy is almost completely transferred
to the gas atoms to generate primary electrons and ions (see section 5.2.4). In order to
measure the interaction rate, it is possible to count the amount of events on the readout
electrode, provided each photon interaction yields a detectable signal above the threshold.
The amplitude of the signal depends on the voltage applied over the GEM foils and must be
sufficient high in order to detect every photon interaction.

The amount of events was counted with the counter module as described in the previous
section, within a time interval of 10 s. The measurement was repeated for each voltage
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Figure 5.8: Pulse shape of the readout electronics measured with an oscilloscope (a), counted pho-
tons interactions in a 10 s time window as a function of the applied voltage (b), the
effective gain as a function of the applied voltage (c) and the Fe-55 spectrum measured
by the GEM (d).
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(3 ≤ V ≤ 3.5 kV) applied on the detector and the result is plotted in Fig. 5.8(b). For low
voltages, the signal is too weak and no counts are observed. When the voltage increases, the
counts are increased because some of the photon interactions generates a detectable signal.
At high voltages, the counts saturate to a value of 16144 events per 10 ns, where the last
two points were averaged. This plateau region corresponds to a photon interaction rate of
R = 1614.4 Hz.

5.2.3 Effective gain

To measure the gain of the detector, the total charge collected on the anode must be measured.
A picoamperemeter was directly connected to the readout electrode measuring the current in
a certain time range. The device is connected to a computer from where the current values
can be processed. As a function of the applied voltage, the current I1 was measured for 30 s.
Because the noise is not negligible at such high voltages, the signal was corrected in order to
obtain the net collected charge on the anode. This was done by subtracting the average noise
level, obtained by measuring the current without source (dark current) in a time interval of
30 s.

Because only the collected charge on the anode was measured, it was only possible to obtain
the effective gain Geff. The gain is defined as the total charge w.r.t. one primary electron and
the following formula was used to calculate Geff as a function of the net current I (measured
in Amperes):

Geff =
I∆t

R∆t ·ni · e
=

I

R ·ni · e
, (5.6)

with:
I∆t the measured charge on the anode in the time window ∆t,
R∆t the amount of photon interactions in the time window ∆t,
ni the amount of electrons released per photon interaction and
e the unit charge.

ni can be calculated with the W -value and the assumption that the total photon energy
is deposited in the gas medium. This approximation is not completely valid as not every
photon deposits its full energy in the drift region (see next section). Notwithstanding the
total primary electrons can be calculated as:

ni =
Eγ
W

=
5.9 keV

27.77 eV/primary
= 212.48. (5.7)

Inserting this value and the previous obtained rate R = 1614.4 Hz in Eq. 5.6, the formula
can be simplified to Geff = 18.197 · I, when I is expressed in pA.

For every high voltage step between 3 and 3.5 kV, the current and dark current was measured
and the gain is extracted. The result is plotted in Fig. 5.8(c) on a log-scale. Expected gains
for triple GEMs up to 105 are obtained and a linear curve as a function of the voltage is
visible. This is a result from the exponential solution of the Townsend equation and the fact
that at high fields α is proportional to the electric field.

5.2.4 Energy resolution and calibration

With the multichannel analyzer, the spectrum of the source can be measured and the energy
resolution can be extracted. Because this device measures the spectrum in units of ADC
counts or channel number, the conversion to the energy scale needs to be done. This cal-
ibration process is rather easy because the energy of the gamma source is known and the
spectrum can easily be correlated with the energy scale.
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The Fe-55 spectrum was directly measured with a multichannel analyzer connected to the
computer via USB. This device records the signal pulse from the readout plane within a short
time interval and converts the pulse amplitude to a digital number. The memory location or
channel corresponding to this digital number is increased by one unit. After the measurement
the values of memory locations are read by the computer and the contents are plotted in an
histogram as a function of the channel number. Because the time between two received pulses
is around R−1 = 1616.4−1 = 618.7 µs, a lot of noise is recorded in the intermediate intervals
and will make a large contribution to the histogram for low channel numbers. Hence, a
channel threshold value of 80 is applied to remove this noise. Furthermore, an internal gain
of the pulse amplitude is set to 3 to reduce additional noise.

The pulse-height spectrum for Fe-55 is shown in Fig. 5.8(d). It starts at the threshold value
of 80 and two peaks are visible. The main peak at channel 400 corresponds to the full photon
peak of 5.9 keV where the full photon energy is converted into primary electrons. The second
peak at channel 170 is the so called escape peak. As explained in chapter 2, the ionized
atoms can relax by emitting a fluorescence photon which can escape from the gas volume.
This photon energy is lost and not available to create primary electrons, resulting in a lower
pulse height. In this case, the 5.9 keV photons can easily ionize the K-shell of Ar (with a
binding energy of 3.2 keV) emitting a photon of 5.9− 3.2 = 2.7 keV. Hence, the escape peak
corresponds to a deposited energy of 3.2 keV.

The main peak at channel 400 corresponds to an energy deposit of 5.9 keV and one expect
a Dirac-peak focused at one channel, corresponding to a constant pulse height. Due to gain
fluctuations and other processes such as attachment, the pulse height will fluctuate around
a central value. These fluctuations reflects in an uncertainty of the energy measurement and
is described with the energy resolution of the detector. The energy resolution is defined as
the FWHM divided by the main peak position. From the spectrum in Fig. 5.8(d), an energy
resolution of 25% is achieved.

5.3 Comparison gain measurements with simulation

Up to now we only discussed the behavior of GEMs with the use of simulations and simple
calculations were able to verify these results. However, the level of the simulation with
Garfield++ is very high and one might wonder if the combination of the different simulated
processes (ANSYS, HEED and Garfield++) are in agreement with experimental results. Gain
measurements provide appropriate data to test the simulations because all the individual
processes are involved, except the timing characteristics such as the simulation of the induced
current.

The experimental results are extracted from the paper Energy Resolution of a Single GEM
Detector, published in the Journal of the Korean Physical society by S.Y. Ha et al [30]. In
this paper, the gain and energy resolution of a single GEM is measured with an experimental
setup equivalent as described in the previous section. The GEM foil dimensions and structure
are described in detail making it possible to simulate an exact copy of the GEM used in the
measurements. Two simulations have been performed: calculating the effective gain as a
function of the GEM and drift voltage. The first simulation uses dimensions given in Table
5.1. The gain measurements as a function of the drift voltage is performed with a fixed GEM
voltage of 470 V, the induction region at 400 V and a drift region thickness of 3 mm.

In the simulations, the photons are not simulated but the primary electrons are directly gen-
erated in the drift region. The initial position is chosen to be random in the unit cell provided
the electron is in the drift region (z < ddrift). This approximation has been validated by sim-
ulating a high amount of incident photons and the distribution of the z-coordinate of the
primary electrons tend to be approximately uniform. The uniformity in the transverse plane
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Figure 5.9: Comparison of the gain with simulated results: gain as a function of the GEM voltage
(a) and as a function of the drift voltage (b).

(x, y) depends on the collimation of photon source but is in general true. The simulations
were repeated over 1000 iterations to increase the statistics.

Both simulation results are shown in Fig. 5.9 where the measured data are also shown for
comparison. As a function of the GEM voltage, shown in Fig. 5.9(a), the gain is again
approximately exponential due to the exponential solution of the Townsend equation. The
simulated gain has the same behavior as the measured gain, though is reduced with an average
factor of 3.22. The same behavior is obtained when the gain is measured as a function of the
drift voltage (see 5.9(b)). The gain is constant, as expected, because the it is only governed
by the GEM voltage. However, when the drift voltage is too low, the primary electrons do
not reach the GEM hole due to recombination and the gain drops (see figure). The simulated
gain is on average reduced with a factor of 2.88.

The reason why the gain is reduced with a factor of 3 is due to different approximations in the
simulation. Although it is not the purpose to investigate the accuracy of the simulations, we
can cite some shortcomings. For example, it is possible that too many electrons are captured
by the lower GEM metal electrode due to inaccuracies when calculating the potential near
the GEM holes. Another possibility is the cluster-size distribution which can be too low
yielding a lower gain. However, the penning transfer rate is assumed to be correctly matched
with the Ar–CO2 gas mixture and it is believed no significant errors are addressed to this
process.



Chapter 6

Time resolution

In the previous chapter, the shape of the raw signal induced on the anode was discussed
on the basis of the GEM and gas properties. The pulse is processed by the electronics and
information of the time coordinate when a charged particle passed through the detector can
be extracted. Because of the stochastic processes inside the detector, the pulse and the time
coordinate measurement are subjected to uncertainties and it is necessary to understand the
cause of these uncertainties in order to reduce them. Furthermore, the measurement of the
time coordinate strongly depends on the electronics used and therefore it is difficult to define
an intrinsic time resolution, independent of the electronics. It is possible, however, to gain
some qualitative knowledge to reduce the uncertainties based on methods for time coordinate
measurements. From this discussion, a method is developed to search for gas mixtures which
reduces the uncertainty on time measurement. This method is applied to some gas mixtures
in ideal circumstances. The last section is devoted to a discussion of the time resolution in
non-ideal circumstances and those nonidealities are applied to the CMS GEM detector.

6.1 Time resolution

6.1.1 Determination of the time offset

The raw signal pulse is processed by the electronics to amplify and deform the signal to a
desired shape (e.g. Gaussian). The output is a voltage v(t) or a current i(t) signal as a
function of time. Most electronics used in particle detectors yield a signal shape as shown
in Fig. 6.1(a), where a large noise contribution is superimposed. The electronic equipment
is followed by a discriminator which imposes a threshold on the signal. The time when the
signal exceeds the threshold value is registered and can be used as a reference to determine
the time when a charged particle passed through the detector. The value of the discriminator
depends on the electronics and must be as low as possible to obtain high accurate time mea-
surements. Moreover, the electronics noise must kept as low as possible because it introduces
an uncertainty (i.e. time jitter, see figure) on the time measurement. These requirements
needs a detailed design of the electronics as a whole and mostly imply the use of expensive
electronic components.

The signal shape can be characterized with the peaking time tp and the rise time tr. tp is
defined as the time needed to go from zero signal to the signal maximum whereas tr is defined
as the time needed to go from 10% to 90% of the signal maximum. Both quantities are often
mixed because they represent nearly the same information.

Depending on the desired quantity to measure (e.g. timing or charge), different methods
exist to impose the threshold on the signal. Two basic methods are the constant fraction
discriminator (CFD) and the leading edge trigger. In the latter, a fixed threshold is imposed
independent of the signal and is therefore rather easy to implement. This method is used when

59
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(a)

(b)
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Figure 6.1: Typical voltage or current signal processed by the electronics with superimposed noise
(a), rise time walk effect due to drift and diffusion fluctuations (b) and amplitude-walk
effect due to gain variations (c). The images are adapted from [8].

the shape and characteristics as peaking time and amplitude remains the same. When the
signal amplitude fluctuates from event to event, the constant fraction discriminator method
is preferred. In this method the threshold is defined as a constant fraction of the signal
amplitude. Different operations such as signal inverting, delays, etc. needs to be implemented
for this method and is therefore more difficult to achieve.

6.1.2 Stochastic nature of a gaseous detector

After having discussed the method to extract time information from the signal, it is needed
to investigate how the signal deviates from event to event. Indeed, because the processes in
a gaseous detector are stochastic, uncertainties are introduced which are transferred to the
signal. It is the purpose of this section to investigate the origin of these uncertainties for GEM
detectors and how to reduce them. The total uncertainty arises from the different processes
such as primary ionization and avalanche and can therefore be treated separately. The
emphasis lies on the uncertainty on the primary ionization, which will be our major concern
in the next sections when the timing characteristics are improved. As a guide through this
section, we will use a GEM detector with 1 mm drift and induction region thickness and
having standard GEM foil dimensions given in Table 3.1. The gas mixture is set to Ar–CO2

with a composition of 75–25%. Events are generated form perpendicularly incident muons
at initial coordinates r0 = (0, 0, 0). Variations of these ideal circumstances will be discussed
in section 6.4 at the end of this chapter.
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Figure 6.2: Simulated distribution P (z, θ, L, λ) describing the distribution of the z-coordinate of the
last cluster. Simulations obtained with HEED using 105 100 GeV muons perpendicular
incident on a GEM detector with gas composition Ar–CO2 (75–25) (STP). Only 97760
events were registered yielding an efficiency of 97.76%.

Time jitter due to primary ionization

The dominant effect on the uncertainty of the time measurement is devoted to the primary
ionization process. The amount of primary ionization encounters, or clusters, is described by
Poisson statistics with mean and RMS equal to L/λ, with L the drift region thickness and λ−1

the cluster density, depending on the gas mixture. It is clear that the last cluster in the drift
region, close to the GEM foil, will induce the first signal on the readout electrodes. Indeed,
a noticeable signal is only induced from the time t1 when the primary electron has entered
the GEM hole because the signal induced when drifting to the hole is masked by the top
metal electrode (see section 5.1.4). At t ≈ t1, the primary electron will trigger an avalanche
and a collective charge will drift to the anode. Because the primary ionization is a stochastic
process, the position of the last cluster differs from event to event as well as the time t1
(mainly because the drift distance fluctuates) and thus the initial time of the induced pulse.
A quantity related to these fluctuations is given by the spread of the z-coordinate of the last
cluster, denoted as σIz . Analogue, σIt0 is defined as the spread in time and depends on the
kinematics of the charged particle. Both quantities are related through σIt0 = σIz/v, with v the
speed of the charged particle. More generally, σIz arises from a probability density function
P (z, θ, L, λ) describing the probability of finding the last cluster in the interval dz. The
distribution depends on the charged particle and incident angle, the gas and the thickness L
of the drift region. For a Ar–CO2 (75–25) gas mixture, the simulated distribution is shown in
Fig. 6.2, compiled with HEED. Because HEED simulations are fast, a high amount of entries
could be obtained yielding an accurate value of σIz equal to 263.3 µm. In the calculation 105

events were generated but only 97760 events were registered, yielding an ionization efficiency
of 97.76%. The spread in time of the last cluster can be calculated as σIt0 ≈ σIz/c = 0.8783
ps, with v ≈ c equal to the speed of light, because 100 GeV muons are relativistic. This
very small spread in time can be neglected and the primary ionization encounters can be
considered as instantaneous.

If the primary electrons of the last cluster are assumed to be liberated instantaneously at the
same position (i.e. in the absence of δ-electrons or UV photons), they all arrive at the same
time in the GEM hole (neglecting diffusion effects) and hence inducing a collective signal
at the same time. In the first instance, we can assume the primary electrons drift towards
the GEM hole with a constant drift velocity vd. Furthermore, if the spread in time of the
avalanche and drift process is neglected, the spread of the initial time of the induced signal
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σIt is equal to the spread in time of the last ionization cluster. The latter can be written as
a function of σIz and vd according to:

σIt =
σIz
vd
. (6.1)

We will call σIt the intrinsic1 time resolution of the GEM detector and it represents a value
for the global time resolution. Indeed, it does not represent an upper limit on the global
time resolution because it does not incorporate drift, diffusion and gain variations which,
in general, increases the value of σIt . Furthermore, it is assumed the electrons in the last
cluster create a detectable signal and are not lot lost due to attachment, recombination or
trapping on the top electrode. In such cases the penultimate cluster must be used to create
the signal, yielding a larger spread in time. Moreover, σIt does not represent a lower limit
because the drift velocity is not constant and must be averaged over its path to the GEM
hole, yielding in general a higher drift velocity. Hence, σIt neutralizes these opposite effects
yielding a good first result of the (intrinsic) time resolution. Furthermore, it does not require
a detailed simulation of the GEM detector which is very time consuming.

To continue the Ar–CO2 example, the drift velocity is equal to vD = 45 µm/ns if the drift
field in the drift region is 1.35 kV/cm (see Table 5.2). With these values, the intrinsic time
resolution can be calculated as:

σIt =
214.8 µm

45 µm · s−1 = 4.77 ns. (6.2)

Drift and diffusion variations

The drift process is accurately described with the electron mobility through the relation
vd = µE and statistical fluctuations on the underlying process can be neglected. Due to
diffusion, however, the concentrated swarm of electrons in the avalanche tend to spread in
both longitudinal and transverse direction. The transverse diffusion yields a slightly broader
signal because the electrons need more time to drift to the anode, though the time offset
remains unattached. However, the broadening of the signal give rise to the time-walk effect
as shown in Fig. 6.1(b) and introduces an additional uncertainty on the time measurement.
The longitudinal diffusion directly influences the time offset but is negligible as the induced
pulse already started just after the avalanche and before longitudinal diffusion could occur.
It therefore only has a (small) contribution to the time-walk effect.

Gain variations

The contribution of (effective) gain variations on the time measurement is shown in Fig.
6.1(c). Because the avalanche process is a stochastic process with fluctuations described by
a Polya distribution, the induced signals will fluctuate in amplitude. This effect is called
amplitude-walk and can be reduced by obtaining a stable GEM gain. However, the effect
on the time measurement can be reduced by using the CFD method, as described in the
previous section. Another important effect concerning gain variations is the probability that
the primary electrons from the last cluster will not induce a detectable signal because the
avalanche is too weak. This effect can be resolved by obtaining a higher gain. However,
higher gains results in larger fluctuations because σ ∝ µ (see section 2.4.2) and a balance
between both effects has to be determined.

1Intrinsic is referred as independent of electronics.
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6.1.3 Definition time resolution

Other effects also contributes to the uncertainty of the time measurement such as the incident
angle and the energy of the charged particle. These contributions as well as the effect on
the drift region thickness will be described in section 6.4. Moreover, the discussion up to
now was based on single GEM detectors. When more GEM foils are added, the drift path
of the charge carriers increases and diffusion will become more important. The uncertainty
on the time measurement can be combined for all processes in one quantity σt,i, which we
will call the intrinsic time resolution2 as it only reflects uncertainties in the GEM detector.
Furthermore, the electronics and noise will introduce an additional spread, denoted as σt,e.
Both effects are independent and if the uncertainties are Gaussian, the total spread in time
can be calculated as:

σt =
√
σ2
t,e + σ2

t,i. (6.3)

The total spread σt is called the time resolution and reflects the total uncertainty of the time
measurement. In practice, the time resolution is measured with a large sample of events,
e.g. with the use of cosmic muons. Two scintillators are installed above and below the GEM
detector, both measuring the time when a muon passes through the scintillators. Scintillators
have an excellent time resolution in the order of 100 ps resulting in an accurate measurement
of the time when the muon hits the GEM detector. This time serves as a reference time
and the time resolution can be extracted. Other methods for measuring the time resolution
involves particle beams (pions or muons), generated with an accelerator.

It must be stressed that the intrinsic time resolution σt,i describes all the uncertainties result-
ing from the stochastic processes in the GEM detector, independent of the electronics. As
we discussed before, the introduced quantity σIt is a good approximation of the total intrinsic
time resolution σt,i. In the next sections we try to optimize σt,i by calculating and comparing
the values of σIt , and where will identify σIt with the intrinsic time resolution.

6.2 Time resolution optimization method

A lot of parameters such as the gas mixture and composition, environmental effects, GEM
dimensions and voltages are able (or not) to optimize the time resolution. When taking all of
these parameters into account, a tremendous amount of possibilities needs to be investigated
and therefore an oriented approach is necessary. We first explain the optimization routes and
deduce afterwards an optimization method or algorithm which will be applied in the next
section.

6.2.1 Optimization routes

Cluster density. The dominant effect on the time resolution arises from the primary ioniza-
tion time jitter and can be reduced by using gas mixtures with high cluster densities. Indeed,
as more clusters will be created in the drift region, the spread σIz of the last cluster will be
reduced. Furthermore, the ionization efficiency will be increased.

Drift velocity. Using a gas with a high drift velocity results in a lower intrinsic time resolu-
tion as can be seen from Eq. 6.1. The drift region voltage and/or thickness must be adjusted
in order to achieve the highest possible drift velocity. However, the electric field in the drift
region is in general limited to 10 kV/cm in order to limit the total voltage across the GEM

2This definition of intrinsic time resolution contains all the stochastic effects including gain and diffusion
variation. The intrinsic time resolution defined in the previous section was only defined with the uncertainty
on the primary ionization (see further in the text).
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detector. Furthermore, a fast signal is achieved when the drift velocity in the induction region
is high, resulting in a fast charge collection and the time-walk effect is reduced. As a result,
the electric field in the induction region is preferably equal to the field in the drift region,
having both a maximized drift velocity.

Attachment. The attachment coefficient η must chosen to be as low as possible over the
entire electric field in the GEM detector. Attachment coefficients in the order of 100–1000
cm−1 will attach electrons even before the avalanche develops and no signal is induced. Lower
attachment coefficients in the order of 10–100 cm−1 partially attach electrons resulting in
weak signals. Furthermore, the probability that a primary electron from the last cluster will
be attached is higher and the time resolution is increased because the penultimate cluster is
used to create the first signal.

Gain. The electrons in the last cluster must induce a signal above the threshold and therefore
the effective gain must be sufficient high. A stable gain is desired to minimize the amplitude
walk and is achieved when the gain is not too high because σ ∝ µ, with µ the mean gain.

6.2.2 Optimization method

Taking the previous considerations into account, the optimization of the time resolution can
be formulated in the following steps:

1. Select a gas mixture. Preferable mixtures are those with a high cluster density, high
drift velocity, high Townsend coefficient and low attachment coefficient.

2. Generate the gas table with Magboltz, i.e. calculate gas parameters as a function of
the electric field.

3. In the electric field region of 1–10 kV/cm, find the field value where the drift velocity
is (locally) maximal.

4. Calculate σIz with HEED and calculate the intrinsic time resolution σIt .

5. Select a GEM geometry and determine the drift and induction voltages needed to
achieve the electric fields in the previous step.

6. Select a GEM voltage based on the Townsend coefficient to achieve an appropriate gas
and effective gain.

7. Generate the ANSYS files with the file generator and simulate the GEM with Garfield++.

8. Extract the effective gain. Adjust the GEM voltage if necessary if the gain is too low
and repeat the previous step.

9. Extract timing information from the induced and convoluted pulses and compare to σIt .

Step 1 and 2 are somewhat overlapping because the gas table is needed to select an appropriate
gas mixture. In the first instance, the selection is based on the cluster density from single
gases. The cluster density is generated with HEED for the available single gases of interest
and is shown in Fig. 6.3. For gas mixtures, the cluster density is linear with the composition,
i.e.:

1

λ
=
∑
i

ni
λi
, (6.4)
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Table 6.1: GEM dimensions used for optimizing the time resolution.

Drift region thickness 1 mm Inner hole diameter 50 µm

Induct region thickness 1 mm Outer hole diameter 70 µm

Pitch 140 µm Rim 70 µm

Kapton thickness 50 µm Metal thickness 5 µm

with ni the fraction and λ−1
i of constituent i. The other desired gas properties such as a high

Townsend, a high drift velocity and low a attachment coefficient are achieved by adding other
gas constituents and the gas table must be calculated for the selected gas mixture. Because
this process is very time consuming (in the order or 12 hours per gas table), the gas tables
were generated in parallel on the STEVIN Supercomputer.

The Townsend coefficient is crucial to adjust the gain and effective gain of the detector.
The Ar–CO2 mixture can serve as a reference value to obtain a gas gain in the order of 170
with a Townsend coefficient of 1850 cm−1. However, the Penning effect is incorporated in
the simulation which leads to a higher gain. Because the Penning effect is disabled in the
following simulations due to missing information of the Penning transfer rates, Townsend
coefficients in the order of 2000 cm−1 will be sufficient. Though, the GEM voltage must be
adjusted as the effective gain can be considerably lower than the gas gain, depending on the
electrostatics.

The extraction of timing information from the raw and convoluted pulses always requires the
introduction of a threshold. A threshold value on the charge is implemented in the analysis
of the pulses, but it turns out the time resolution is very sensitive to the threshold value.
Therefore it is not possible to extract accurate timing information and other methods must
be implemented in order to obtain the time resolution. Due to lack of time, other methods
are not implemented and we settle with the intrinsic time resolution σIt .

6.3 Time resolution optimization

The optimization method deduced in the previous section is now applied on a single GEM
detector. The GEM dimensions used are listed in Table 6.1. To reduce computation time,
the drift region was set to 1 mm to reduce the amount of primary electrons and hence to
reduce the calculation of the avalanches. The environmental parameters are set to standard
temperature and pressure (STP). For each simulation, 100 events were calculated consisting of
100 GeV muons, perpendicularly incident at r0 = (0, 0, 0). The calculation of σIt is repeated
over 104 times to achieve an accurate result. The local maximum of the drift velocity is
visually determined using the ROOT browser by selecting the highest drift velocity in the
electric field region below 10 kV/cm. This is accurate up to a few µm/ns. The drift velocities
of the gases used in this section are plotted in Appendix C.

In principle, every gas mixture can be used which is available in the Garfield++ database.
In practice, however, not every gas mixture is suitable for gas detectors as some gases are
flammable or are expensive. Such constraints are not taken into account in the following
discussion. However, recent policies supported by research organizations such as CERN
discourage the use of greenhouse gases. In later stages the use of strong greenhouse gases
will be even forbidden. To tackle this, we separate our search for optimal gas mixtures in
non-greenhouse and greenhouse gas mixtures.
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Figure 6.3: Cluster densities for the gases of interest as a function of the muon energy. Plots obtained
with HEED simulations at STP.
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6.3.1 Non-greenhouse gas mixtures

A number of non-greenhouse gas mixtures were calculated and the intrinsic time resolution
was extracted. The results, listed in Table 6.3, will now be briefly discussed and a general
general conclusions will be drawn at the end of this section.

Ar-CO2 mixtures

In the first sections of this chapter, the Ar–CO2 (75–25) gas mixture was used as an example
to calculate the intrinsic time resolution equal to 4.77 ns, given a drift region electric field of
1.35 kV/cm. As shown in Fig. 5.1, the local maximum of the drift velocity is equal to 74
µm/ns at an electric field of 7 kV/cm. Hence, the instrinsic time resolution can be improved
to:

σIt =
214.8 µm

74 µm · s−1 = 2.90 ns. (6.5)

The corresponding drift and induction region voltages are equal to 700 V. Two single GEMs
have been simulated with GEM voltages of 400 and 450 V respectively. In the first case, the
Townsend coefficient α is equal to 1450 cm−1, yielding a gas gain of 215.384 and an effective
gain of 68.864 (ξ ≈ 0.32). In the latter a gas gain of 72.734 and an effective gain of 20.727 is
obtained (ξ ≈ 0.32) with a Townsend coefficient equal to 1750 cm−1. It must be stressed that
the Penning effect is enabled in these calculations yield higher gains w.r.t. the magnitude of
α.

C5H12

Based on the cluster density λ−1, C5H12 (pentane) is the best non-greenhouse gas with a
cluster density of 137 cm−1 for 100 GeV muons (see Fig. 6.3). A local maximum of the
drift velocity 55 µm/ns is observable at an electric field of 4 kV/cm. The spread of the last
cluster is simulated and is equal to σIz = 74.29 µm, resulting in an intrinsic time resolution
of σIt = 1.35 ns. The Townsend coefficient is low compared to Ar–CO2 (75–25) as can be
seen from Fig. 2.5 and it is expected large GEM voltages must be applied to achieve an
appropriate gain.

Table 6.2: Simulation results for C5H12.

VGEM [V] EGEM [kV/cm] α [cm−1] G Geff

500 100 623.0 1.623 1.150

600 120 1039.6 3.195 2.125

700 140 1456.2 9.28 5.773

800 160 1872.8 55.26 19.816

Four GEMs have been simulated with a drift and induction voltage of 400 V to investigate the
gain as a function of this GEM voltage. The results are shown in Table 6.2. The Townsend
coefficients were linear extrapolated with the data available from Fig. 2.5 and evaluated at
the GEM hole field magnitude. Large GEM voltage above 800 V are indeed needed to achieve
acceptable gains.

C4H10

The second suitable non-greenhouse gas is C4H10 (butane), again based on the cluster density.
The drift velocity is comparable to C5H12 and shows a local maximum of 54 µm/ns at 6
kV/cm. The Townsend coefficient (see Fig. 2.5) is double w.r.t. the C5H12 coefficient and



68 CHAPTER 6. TIME RESOLUTION

therefore lower GEM voltages will be needed needed. On the other hand, because the cluster
density is lower, a higher intrinsic time resolution of σIt = 1.65 ns is obtained, with σIz equal
to 89.14 µm. With the given parameters for the drift and induction voltages, a single GEM is
simulated with VGEM = 600 V, yielding a gas gain of 18 and an effective gain of 9.82. Again,
high GEM voltages in the order of 600–800 V needed to operate with an appropriate gain.

C4H10–C5H12

Although high GEM voltages were needed in the previous simulated gas mixtures, both gases
are now combined and an optimal composition is determined. In Table 6.3, the calculated
compositions are listed and both gas table and σIz were determined for each composition. The
best time resolution is obtained with a high amount of C5H12, but the Townsend coefficient is
subsequently lower. To compromise both, the C4H10–C5H12 (60–40) composition is selected
with a time resolution of 1.49 ns. Two GEMs were simulated with VGEM = 600 V and 700
V, both having Vdrift = Vinduct = 420 V. Only the second GEM with VGEM = 700 V results
in a more acceptable gas gain of 42.9 and an effective gain of 20.92.

CO2–C5H12

Compared to C4H10, CO2 has a slight lower drift velocity, a lower cluster density and a
nearly equal Townsend coefficient in the high field regime. Therefore, CO2–C5H12 mixtures
are able to operate at lower GEM voltages but the time resolution will be increased. Different
compositions were calculated (see table) and based on the Townsend coefficient the (40–60)
composition is selected having a time resolution of 1.73 ns. A GEM with Vdrift = Vinduct = 800
V is simulated with a GEM voltage equal to 650 V. The gas gain is equal to 64.55 with an
effective gain of 34.06.

Ar–C5H12 and Xe–C5H12

Both Argon and Xenon have large Townsend coefficients up to 2500 cm−1 at 100 kV/cm
and are therefore also suitable to increase α of pure C5H12. Furthermore, the Townsend
coefficient of Ar and Xe is higher than CO2 and it is thus expected that α is increased w.r.t.
CO2–C5H12 mixtures. Unfortunately, the Townsend coefficient of both Ar–C5H12 and Xe–
C5H12 is is reduced to 1200 cm−1 at 100 kV/cm and no advantage based on α is achieved.
From the table, the Ar–C5H12 (40–60) and Xe–C5H12 (40–60) were selected and simulated
with the corresponding optimal drift and induction voltages. The first mixture, having a time
resolution of 1.93 ns, is simulated with a GEM voltage of 600 V yielding a gas and effective
gain of 32.47 and 10.77 respectively. The time resolution of the second selected mixture is
1.86 ns and is simulated with a GEM voltage of 650, yielding a higher gas gain of 58.23 and
effective gain of 25.39 which is indeed slightly lower than the CO2–C5H12 (40–60) gain.

Ar–C4H10 and Xe–C4H10

The same gas mixtures as in the previous paragraph were calculated with C5H12 replaced
by C4H10 to obtain a higher Townsend coefficient. Indeed, after generating the gas tables,
a Townsend coefficient 1500 cm−1 is achieved for both Ar–C4H10 (20–80) and Xe–C4H10

(20–80) at 100 kV/cm. The intrinsic time resolution of both gas mixtures are very close to
each other in the order of 1.9 ns. No simulations has been performed on these gas mixtures,
however.
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Table 6.3: Results of gas tables and σI
z for various non-greenhouse gas mixtures. The intrinsic time

resolution σI
t is calculated from the parameters by using Eq. 6.1. (*) no local maximum

was found for these gases; a field of 8 kV/cm was used.

Gas mixture vd,max [µm/ns] E(vd,max) [kV/cm] σI
z [µm] σI

t µm [ns]

Ar–CO2 75–25 75 7.0 214.8 2.90

C5H12 55 4.0 74.29 1.35

C4H10 54 6.0 89.17 1.65

Xe–CO2 75–25 45 2.1 178.2 3.96

CO2* 90 8.0 193.6 2.15

C3H8 50 4.5 126.8 2.54

C4H10–C5H12 80–20 53 4.5 85.05 1.60

C4H10–C5H12 60–40 55 4.2 82.0 1.49

C4H10–C5H12 40–60 55 4.1 77.53 1.41

C4H10–C5H12 20–80 55 4.1 74.21 1.34

CO2–C5H12 80–20* 70 8.0 158.7 2.27

CO2–C5H12 60–40* 63 8.0 119.8 1.9

CO2–C5H12 40–60 58 8.0 100.5 1.73

CO2–C5H12 20–80 58 6.0 84.84 1.46

Ar–C5H12 80–20 46 2.1 172.9 3.76

Ar–C5H12 60–40 55 2.1 130.1 2.36

Ar–C5H12 40–60 55 2.1 105.9 1.93

Ar–C5H12 20–80 55 4.0 84.11 1.53

Xe–C5H12 80–20 40 2.0 135.6 3.39

Xe–C5H12 60–40 48 3.0 112.3 2.34

Xe–C5H12 40–60 51 4.1 94.88 1.86

Xe–C5H12 20–80 55 4.1 82.76 1.50

Ar–C4H10 80–20 50 1.0 182.9 3.66

Ar–C4H10 60–40 50 2.1 149.6 2.99

Ar–C4H10 40–60 53 4.0 124.2 2.34

Ar–C4H10 20–80 54 4.5 101.7 1.88

Xe–C4H10 80–20 38 2 141.9 3.7

Xe–C4H10 60–40 44 2.05 122.4 2.78

Xe–C4H10 40–60 50 4.2 109.7 2.19

Xe–C4H10 20–80 52 4.5 99.43 1.91

Xe–CO2 mixtures

For 100 GeV muons, the cluster density of Xenon is around 1.6 times higher than the cluster
density of Argon. Therefore, it might be possible to improve the Ar–CO2 (75–25) time
resolution by replacing Ar with Xe. In this mixture, the local maximal drift velocity is 45
µm/ns at a field of 2.1 kV/cm. The spread of the last cluster σIz is equal to 178.2 µm, yielding
an intrinsic time resolution of σIt = 3.96 ns. This value is higher than the optimized Ar–CO2

mixture (with σIt = 2.90 ns) due to its lower drift velocity. Hence, no improvement is made
and this mixture is not further simulated.

Summary

From the previous discussion it is clear that the presence of both C5H12 and C4H10 leaded to
improved values of the time resolution. However, the Townsend coefficients of both gases are
relative small and therefore other gas constituents such as Ar, Xe or CO2 must be added to
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increase α. The CO2–C5H12 (40–60) and Xe–C5H12 (40–60) mixtures provides time resolu-
tions in the order of 1.8 ns operating at GEM voltages of 650–750 V to achieve an appropriate
gain. However, the last gas mixture is more suitable because the drift and induction fields
must be 4.1 kV/cm. The total gain can be increased by adding more GEM stages with
transfer fields equal to 4.1 kV/cm in order to obtain fast signals. The C4H10–C5H12 (60–40)
mixture is also a possible candidate with a time resolution of 1.5 ns but higher GEM voltages
are needed in the order of 700–800 V. A third possible candidate is Ar/Xe–C4H10 (20–80)
with a time resolution of 1.9 ns. Based on the Townsend coefficient, it is expected that such
gas mixtures could operate with lower GEM voltages, but these simulations still needs to be
performed.

6.3.2 Greenhouse gas mixtures

In this section three additional greenhouse gases are introduced: CF4, C3F8 and C2F6. Be-
cause the high amount of fluorine atoms, attachment has to be taken into account and the
attachment coefficient is plotted in Fig. 2.4 for the three pure gas mixtures as a function
of the electric field. The drift velocities for the different calculated gas mixtures are again
plotted in appendix C. Table 6.5 summarizes all the calculated gas mixtures and a brief
discussion is given below.

CF4

The drift velocity of pure CF4 is plotted in Fig. 2.3 and a large maximum of 145 µm/ns at 5
kV/cm is visible. Of all the common gases used in particle detectors, CF4 is by far the fastest
gas in the low electric field region. At an electric field magnitude of 100 kV/cm, Townsend
coefficient is in the order of 2000 cm−1 and is almost equal to the effective Townsend coefficient
as the attachment coefficient is around 50 cm−1 at 100 kV/cm. A manageable maximal η
value of 110 cm−1 is observed at 35 kV/cm (see Fig. X). These excellent properties make
it possible to use CF4 as a pure gas mixture. The spread is calculated to be σIz = 145.3
µm, yielding an intrinsic time resolution of 1.00 ns. Three GEMs have been simulated with
Vdrift = Vinduct = 500 V and the results are listed in Table 6.4. Appropriate gains are obtained
with acceptable GEM voltages, resulting in an excellent gas with good time resolution.

Table 6.4: Simulation results for CF4. (*) linear extrapolated from the available data.

VGEM [V] EGEM [kV/cm] α [cm−1] G Geff

400 80 1300 7.16 1.22

500 100 1950 40.97 7.32

600 120 2632* 324.41 52.91

C5H12-CF4

W.r.t. the previous Xe–C5H12–CF4 mixtures, the time resolution can be improved if the Xe
constituent is removed because it has a low cluster density. After the calculation of the gas
tables and σIz , such gas mixtures indeed yield a time resolution in the order of 1–1.2 ns (see
Table). On the other hand the removal of Xe will reduce the Townsend coefficient and higher
GEM volatages are needed. The 40–60 composition is calculated with Vdrift = Vinduct = 550
V and VGEM equal to 550 V. The gas gain is simulated to be 26.06 with an effective gain of
8.32. Hence, the GEM voltage needs to be increased up to 650–750 V in order to achieve
suitable gains. Such simulations have not been performed yet.
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Table 6.5: Results of gas tables and σI
z for various greenhouse gas mixtures. The intrinsic time

resolution σI
t is calculated from the parameters by using Eq. 6.1.

Gas mixture vd,max [µm/ns] E(vd,max) [kV/cm] σI
z [µm] σI

t µm [ns]

CF4 145 5.0 145.3 1.00

C3F8 113 12.0 69.90 0.62

CHF3 20.00 8.0 159.2 7.96

BF3 100.0 8.5 182.5 1.83

C3F8–CO2 50–50 75.0 8.0 104.6 1.39

C5H12–CF4 80–20 71 4.1 83.4 1.17

C5H12–CF4 60–40 87 5.0 92.22 1.06

C5H12–CF4 40–60 100 5.5 103.5 1.04

C5H12–CF4 20–80 118 5.5 119.8 1.02

C5H12–C2F6 80–20 70 6.0 76.42 1.09

C5H12–C2F6 60–40 82 6.0 78.59 0.96

C5H12–C2F6 40–60 90 6.2 82.47 0.92

C5H12–C2F6 20–80 100 7.5 84.93 0.85

Xe–C5H12–CF4 60–20–20 66 4.0 128.7 1.95

Xe–C5H12–CF4 60–10–30 80 4.0 144.2 1.8

Xe–C5H12–CF4 60–30–10 58 4.0 120.7 2.08

Xe–C5H12–CF4 40–20–40 90 4.1 127.8 1.42

Xe–C5H12–CF4 40–40–20 70 4.1 109.6 1.56

Xe–C5H12–CF4 40–30–30 80 4.1 118.8 1.49

Xe–C5H12–CF4 50–25–25 75 4.1 127.7 1.66

Xe–C5H12–C3F8 60–20–20 70 4.1 108.9 1.56

Xe–C5H12–C3F8 60–10–30 80 6.2 110.6 1.38

Xe–C5H12–C3F8 60–30–10 62 4.0 109.1 1.75

Xe–C5H12–C3F8 40–20–40 85 6.2 88.97 1.04

Xe–C5H12–C3F8 40–40–20 70 5.0 95.09 1.36

Xe–C5H12–C3F8 40–30–30 78 6.15 95.16 1.22

Xe–C5H12–C3F8 50–25–25 75 6.0 98.2 1.31

Xe–C5H12-CF4

To reduce the amount of greenhouse gas, a mixture of Xe–C5H12-CF4 is proposed. Xenon
is used as the basis with a high value of α, and additional gas constituents are added to
increase the cluster density (C5H12) and the drift velocity (CF4). Different compositions
were calculated and the results are listed in Table 6.5. The gas composition (40-20-40) is
chosen based on its low time resolution (equal to 1.42 ns), taking the Townsend coefficient into
account (α = 2200 cm−1 at 100 kV/cm). The GEM is simulated with Vdrift = Vinduct = 410
V and Vdrift = 500 V, yielding a gas gain equal to 64.73 and an effective gain of 18.92.

C3F8 and C2F6

Theoretically, the best time resolution is achieved with C3F8. Indeed, with a local maximal
drift velocity of 113 µm/ns and σIz = 69.9, an intrinsic time resolution 619 ps is obtained.
However, the eight fluoride atoms result in a high maximal attachment coefficient of 840
cm−1 at an electric field magnitude of 40 kV/cm. Furthermore, in the field region of 20–130
kV/cm, the attachment coefficient is higher than 300 cm−1. It is thus expected that many
electrons will be attached leading to low values of the gain. Indeed, when simulating the
GEM in the optimized configuration (i.e. with matched drift and induction electric fields),
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all the primary electrons were attached, independent of the GEM voltage. As a result, the
usage of pure C3F8 is limited because every primary electron will be attached, independent
of the electric fields. The same conclusion can be drawn for pure C2F6 which has a maximal
attachment coefficient of 600 cm−1 at 33 kV/cm.

Xe–C5H12–C3F8 and C5H12–C2F6

Because C3F8 is proved to be not useful as a gas mixture for particle detectors, it is possible
to form combinations with this constituent. For example, the intrinsic time resolution for
different gas compositions of Xe–C5H12–C3F8 were calculated and shown in the table. The
best time resolution is obtained with a high amount of C3F8. However, the attachment
coefficient remains very high, up to a maximal η of 200 cm−1 for the 60–30–10 mixture.
After simulating the 40–40–20 composition, it was found all the electrons were attached and
a gain of zero is obtained. The same conclusions can be drawn for C5H12–C2F6 were the
intrinsic time resolution is calculated and listed in the table. After simulating with the 80–20
gas mixture, all the electrons were attached and a effective gain of zero is obtained.

Summary

Based on the cluster density, the C3F8 and C2F6 gases were promising to improve the time
resolution. However, it turns out the large attachment coefficient makes both gases unsuitable
because too much electrons were attached, yielding very low gain values. On the other hand,
CF4 is proven to be a gas with excellent properties such as Townsend coefficient, drift velocity
and attachment. It can be used as a standalone gas or used in composition with, for example,
C5H12, yielding a time resolution in the order of 1–1.2 ns. Further investigation needs to be
done to reduce the amount of CF4 as it is a strong greenhouse gas.

6.4 Non-ideal circumstances

In the previous section, the ideal circumstances were defined as events with 100 GeV muons
perpendicularly incident on a GEM detector with 1 mm drift region thickness. Three nonide-
alities, being the effect of the drift region thickness, the incident muon energy and angle will
affect σtz and therefore the time resolution and are discussed in this section. This knowledge
will be applied on the CMS GEM detectors in the last section of this paragraph.

6.4.1 Drift region thickness

Based on the Poisson statistics, it is possible to derive an analytic expression for the dis-
tribution P (z, θ, L, λ) and therefore the calculation of the RMS as a function of the drift
region thickness and the gas parameter λ is possible. However, the approach used here is to
investigate directly the effect of the drift region thickness with the use of simulations. Five
GEMs with a drift region thickness of 1, 2, 3, 4 and 5 mm were simulated with different
gases. The result is shown in Fig. 6.4. For gases with a high cluster density (Ar–C5H12 in
the figure) the spread σIz is almost independent of the drift region thickness. On the other
hand, the spread σIz of gases with a low cluster density (Ar–CO2) tend to decrease at a small
drift region thickness of 1–2 mm. The spread σIz for intermediate cluster densities such as
Xe and CF4 only tend to decrease at a low drift region thickness of 1 mm. The dependence
on σIz on the drift region thickness for a specific gas mixture clearly converges to a constant
value at large thicknesses and this value can be used as an upper limit of σIz .
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Figure 6.4: Simulated last cluster spread σI
z for different gas mixtures. The data points were ob-

tained by using five single GEMs with different drift region thickness. For each point
105 100 GeV muons were perpendicular incident at STP.

6.4.2 Muon energy

As already discussed in section 6.1.2, the spread σIz increases when the cluster density is
increased. The latter is related to the muon energy with the curves obtained in Fig. 6.3.
As a result, the spread σIz and the time resolution is related to the muon energy but this
dependence is rather low for high relativistic muons as the cluster density is almost constant
in this high energy region. For low energy particles below 1 GeV, the cluster density increases
yielding low values for σIz . This behavior is obtained with simulations for three gas mixtures
and muon energies ranging from 100 MeV to 1 Tev. The results are listed in Table 6.6.

Table 6.6: Spread of the last cluster σz (units: µm) as a function of the energy for different gas
mixtures. The simulations were performed on a single GEM with 1 mm drift region
thickness and 104 perpendicularly incident muons at STP.

Ar–CO2 CF4 C5H12

100 MeV 191.6 111.6 70.14

1 GeV 234.2 165.5 71.16

10 GeV 215.9 139.6 70.76

100 GeV 211.7 136.4 70.41

1 TeV 211.6 141.9 69.61

6.4.3 Incident angle

The incident direction of the charged particle can be described by the angle θ w.r.t. the
normal of the GEM detector (z-direction) and the angle φ describing the transverse direction.
Because the GEM detector is symmetric in the transverse direction, the simulation and
measurements are, on average, independent of φ. When θ increases, more ionizations occur
in the drift region because the ionization track length LI increases according to:

LI =
ddrift

cos θ
. (6.6)

Hence, both σIz and σIt decreases when θ increases. This result is obtained with single GEM
simulations with ddrift = 3 mm and incident muons with different θ angles. The results are
shown in Table 6.7. The decrease in time resolution is only valid if the events are generated
with a constant known incident angle, which is for example not the case in CMS where
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Table 6.7: Spread of the last cluster σz (units: µm) as a function of the angle θ for a Ar–CO2 (75–25)
gas mixture. The simulations were performed on a single GEM with 3 mm drift region
thickness and 104 100 GeV perpendicularly incident muons at STP.

Angle [◦] 0 15 30 45 60 75

σI
z [µm] 269.0 255.5 227.0 188.7 132.1 69.3

σI
t [ns] 3.6 3.45 3.07 2.55 1.78 0.94

muons are spread with different θ angles (see next section). Furthermore, large θ values tend
to spread out the primary ionization in the transverse direction yielding a degradation of the
spatial resolution and the charge collected on the readout strips. These effects, as well as
others, will also affect the time resolution and more investigation is needed, however.

6.4.4 CMS GEM detectors

The previous nonidealities are manifested as follows in the CMS GEM GE1/1 detectors:

• drift region: the drift region thickness of the GEM detectors is equal to 3 mm;
• incident angle: the GE1/1 sector covers the high η-region (1.6 < η < 2.1) and therefore

the incident muons have an isotropic angle in the interval θ ∈ [13.96◦, 22.38◦];
• energy: the energies of interest are in the 1–1000 GeV muon energy region.

The two proposed gas mixtures for operation, Ar–CO2 (75–25) and Ar–CO2–CF4 (45–15–
40), were simulated including these nonidealities. The muons are isotropic generated in the
high η-region yielding a value for σIz of 251.7 and 186.2 µm respectively. The corresponding
intrinsic time resolutions obtained are 3.4 ns and 1.77 ns respectively.

6.5 Summary

The algorithm developed in section 6.2 is applied to several gas mixtures, where a distinction
was made between greenhouse and non-greenhouse gas mixtures. The intrinsic time resolution
is compared with the Ar–CO2 (75–25) as a reference gas mixture. Pure C5H12 and C4H10

leaded to improved values of the time resolution but high GEM voltage were needed due
to the low Townsend coefficient. By adding Ar, Xe or CO2, the Townsend coefficient was
increased. Gas mixtures such as Xe–C5H12 and Ar/Xe–C4H10 (20–80) were promising with
an intrinsic time resolution below 2 ns and having reasonable Townsend coefficients. Based on
the cluster density, the C3F8 and C2F6 gases were promising to improve the time resolution
but due to their high attachment coefficient, very low gains were observed and therefore are
not suitable. On the other hand, CF4 is proven to be a gas with excellent properties such
as Townsend coefficient, drift velocity and attachment. It can be used as a standalone gas
or used in composition with, for example, C5H12, yielding a time resolution in the order of
1–1.2 ns. Further investigation needs to be done to reduce the amount of CF4 because it
is a strong greenhouse gas. Afterwards, the nonidealities were briefly discussed. A small
dependence of σIz on the drift region thickness was observed with gases having low cluster
densities, but almost immediately converged to a constant value when higher drift region
thicknesses were used. The dependence of the muon energy was found to be negligible as the
cluster density λ−1 is almost constant for muons with energies above 1 GeV. The incident
angle clearly influences the spread σIz because non-perpendicularly incident muons leave a
larger ionization track length in the drift region, hence decreasing the value of σIz . However,
large incident angles tend to spread out the primary ionization in the transverse direction,
yielding a degradation of the spatial resolution and the charge collected on the readout strips.



Chapter 7

Summary and outlook

7.1 Summary

High Energy Particle physics nowadays make use of powerful accelerators to accelerate beams
with elementary particles in order to collide them head on. In such collisions, the energy
available materializes with the production of many particles distributed over the total solid
angle. Sophisticated detectors are needed which must be fast and accurate to detect and
identify these particles, from which physical results can be extracted. A new promising type
of detector is the Gas Electron Multiplier (GEM), developed in the late nineties by F. Sauli.
The triple GEM is proposed for the upgrade of the Compact Muon Solenoid (CMS) at the
CERN Large Hadron Collider. Due to its excellent rate capabilities, excellent spatial and
time resolutions, radiation resistance and capability to operate in high magnetic fields, it can
cope with the expected high radiation environment in the CMS forward region during the
high luminosity phase of the collider. Further research is ongoing to improve the properties
and performance.

In this paper, the time response of GEM detectors has been studied using several simulation
packages. ANSYS Inc. is used to define the GEM geometry in terms of a unit cell. Making use
of the Finite Element Method, the potential is calculated in the gas medium for a fixed set of
boundary conditions, i.e. for a fixed set of voltages applied on the electrodes. Garfield++ is
then used for the calculations of the primary ionization, charge transport and signal creation.
This software package combines different standalone programs such as HEED and Magboltz.
Finally, ROOT is used to analyze the results. To work efficiently with these programs, a local
simulation environment is set up which acts as an interface between the different software
packages. A program is written in HTML/PHP where the GEM dimensions and potentials
can be submitted via a browser-based graphical user interface. The necessary ANSYS files
are generated as well as a file containing the geometry and potentials in a human-readable
format. This file can be imported in Garfield++ such that the GEM dimensions are accessible.
The simulations were performed on two supercomputers, the CERN computing grid and the
STEVIN supercomputer at Ghent University.

A single GEM with standard gas mixture Ar–CO2 (75–25) was simulated with perpendicu-
larly incident 100 GeV muons. The gas gain was calculated from the avalanche size which
was recorded for each primary electron. The gain variations are described with a Polya
distribution and a mean gain of 171.2 was observed. However, not every electron in the
avalanche will induces a signal because it is possible that electrons are collected on the GEM
foil electrodes or trapped on the kapton layer. This results in a lower gain and the effective
gain is defined as the total amount of electrons which are captured by the anode. In the
simulations, an effective gain of 69.31 is obtained, corresponding with 40.84% of the total
gas gain. In order to understand the total induced signal from a muon, the induced signal

75
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of a single primary electron is investigated. A block pulse is observed, as expected from the
Shockley-Ramo theorem, with a time offset equal to the drift time of the primary electron
towards the GEM hole. A noticeable signal is induced when the avalanche starts in the GEM
hole. The duration of the pulse is equal to the drift time in the induction region. It turns
out the time offset and pulse duration can be described with the drift velocity kinematics
of electrons, assuming a constant field in the drift and induction region. The total pulse
from several primary electrons is a superposition in time of the individual pulses from the
primary electrons. The simulations have been compared to experimental data. The gain of a
single GEM was calculated as a function of the GEM voltage and the drift field. Consistent
behavior with the experimental results were observed, though the simulated gain was reduced
with a factor 3.

The measurement of the time coordinate when a charged particle passed through the detector
is obtained by imposing a threshold value on the signal processed by the electronics. Because
the processes in a gaseous detector are stochastic, the time measurement is subjected to
uncertainties which defines the time resolution of a detector. The dominant contribution
of the time resolution is the time jitter derived from the primary ionization. Indeed, the
electrons from last cluster in the drift region will induce the first signal on the anode. Due to
the stochastic process of primary ionization described by Poisson statistics, the spread of the
last cluster σIz (along the z-axis, perpendicular to the GEM plane) is related to the spread
the time measurement. The intrinsic time resolution is then defined as σIt = σIz/vd, with
vd the drift velocity in the drift region. With this definition of the time resolution, effects
such as gain and diffusion variations as well as the electronics are not taken into account.
Together with other general considerations, an algorithm is developed to search for optimal
gas mixtures and to adjust the GEM voltages and/or dimensions with the aim of optimizing
the intrinsic time resolution. It is based on finding a gas mixture with a high cluster density
(reducing σIz) and to optimize electric field in the drift region such that the drift velocity is
maximal (increase vd). Afterwards, a suitable the GEM voltage is obtained by simulation.

The algorithm developed is applied to several gas mixtures, where a distinction was made
between greenhouse and non-greenhouse gas mixtures. The intrinsic time resolution is com-
pared with the Ar–CO2 (75–25) as a reference gas mixture. Pure C5H12 and C4H10 leaded
to improved values of the time resolution in the order of 1.5 ns, but high GEM voltage
were needed due to the low Townsend coefficient. By adding Ar, Xe or CO2, the Townsend
coefficient was increased. Gas mixtures such as Xe–C5H12 and Ar/Xe–C4H10 (20–80) were
promising with an intrinsic time resolution below 2 ns and having reasonable Townsend co-
efficients. Based on the cluster density, the C3F8 and C2F6 gases were promising to improve
the time resolution but due to their high attachment coefficient, very low gains were observed
and therefore are not suitable. On the other hand, CF4 is proven to be a gas with excellent
properties such as Townsend coefficient, drift velocity and attachment. It can be used as a
standalone gas or used in composition with, for example, C5H12, yielding a time resolution
in the order of 1–1.2 ns. Further investigation needs to be done to reduce the amount of CF4

because it is a strong greenhouse gas.

Afterwards, non-ideal circumstances such as the GEM drift region thickness, the muon energy
and the incident angle were investigated. A small dependence of σIz on the drift region
thickness was observed with gases having low cluster densities whereas the dependence on
the muon energy was found to be negligible. The incident angle clearly influences the spread
σIz because non-perpendicularly incident muons leave a larger ionization track length in the
drift region, hence decreasing the value of σIz . However, large incident angles tend to spread
out the primary ionization in the transverse direction, yielding a degradation of the spatial
resolution and the charge collected on the readout strips.
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7.2 Outlook

In this study, the intrinsic time resolution was taken as a reference to compare different gas
mixtures and to optimize the time resolution of GEMs. This concept does not take any
electronic equipment into account, as well as gain and diffusion variations were neglected. It
is clear that the intrinsic time resolution must be compared to experimental results and the
algorithm deduced in this chapter must be verified.

In the first instance, the time resolution as a function of the electric field in the drift region
must be measured and compared to the algorithm. At the optimal drift field value, a minimum
of the time resolution must be visible which corresponds maximized drift velocity in the
drift region. The electronics used to extract the time resolution must be optimized and the
threshold value must be as low as possible. Furthermore, the time resolution as a function of
the GEM voltage (or gain) and the induction field can be studied, which was not completely
incorporated in the algorithm. In the next step, the measurement of the time resolution
must be executed (under ideal circumstances) with different gas mixtures in order to study
the behavior of the cluster density. Because the time jitter due to primary ionization is the
dominant effect on the time resolution, it is expected that the same ordering is experimentally
obtained as the ordering of the time resolution in Tables 6.3 and 6.5 (i.e. gases with a high
cluster density will result in a lower time resolution).

After comparing experimental time resolutions with the intrinsic time resolutions, it is useful
to separate the intrinsic and the contribution of electronic time resolution (i.e. σt,i and σt,e
respectively). This can be achieved by considering two GEM configurations (e.g. with two gas
mixtures or with different voltages), which have the same electronics. In both configurations,
the intrinsic time resolution is determined, denoted as σt,i,1 and σt,i,2, with the algorithm in
chapter 6. Again, the intrinsic time resolution is identified with σIt as defined in Eq. 6.1.
Furthermore, the time resolutions for both configurations, σt,1 and σt,2, are measured. In this
measurement, the GEM voltage must be adjusted in order to have the same effective gain for
both configurations. By using Eq. 6.3, one obtains a system of two equations which can be
solved to the electronic time resolution σt,e:

σt,1 =
√
σ2
t,e + σ2

t,i,1, (7.1)

σt,2 =
√
σ2
t,e + σ2

t,i,2. (7.2)

In this way, the intrinsic time resolution is scaled to the total time resolution with a value
of the electronic time resolution. Because both configurations are measured with the same
gain, the gain fluctuations are constant and incorporated in σt,e.

Besides the proposed experimental measurements and tests, a lot of other research can be
performed by experiment such as:

• the influence on the angle of the incident muons by rotating the GEM detector in a
muon beam,
• the influence on the muon energy and investigation with other charged particles and
• optimization of the GEM voltage and induction voltage.

Accordingly, further improvements of the simulations are needed and the following items
needed to be investigated with regard to the time resolution:

• more accurate description of the time resolution taking gain and diffusion variations
into account, independent of the electronics,
• detailed study on how to reduce the gain and diffusion variations and
• investigation of new and/or more complex gas mixtures.





Appendix A

Single GEM ANSYS input file

In this appendix the ANSYS input file is briefly described for a single GEM. Only the im-
portant instructions are explained in detail, other commands can be found in the ANSYS
user manual. The dimensions and boundary conditions used are given in the code where the
values must be entered in mm. In the text file, comments are preceded by the ! sign.

The file is initialized by the following instructions to clear the current session and to initialize
a new session:

FINISH

/CLEAR,START

/PREP7

/PMETH,OFF,1 ! No polynomial elements

! Set electric preferences

KEYW,PR_ELMAG,1

KEYW,MAGELC,1

The FEM mesh must be set to the 10-tetrahedron:

ET,1,SOLID123 ! Select element

To make the code more readable, we first define some variables containing the dimensions
and coordinates of the GEM geometry:

pitch = 0.14

kapton = 0.05

metal = 0.005

outdia = 0.07

middia = 0.05

rim = 0.08

drift = 2 ! 2 mm drift region

induct = 1 ! 1 mm induct region

totalth = drift + induct + 2*metal + kapton ! total thickness

However, the values of the drift, induction, metal and kapton thicknesses will be directly
used rather than using the variables. In the next step, four materials are defined with their
permittivity values:

! Material properties

MP, PERX, 1, 1e10 ! metal

MP, RSVX, 1, 0.0 ! set metal resistance to zero

MP, PERX, 2, 1.0 ! gas = vacuum

MP, PERX, 3, 4.0 ! kapton

79



80 APPENDIX A. SINGLE GEM ANSYS INPUT FILE

In the next steps, the GEM geometry is defined. As described in chapter 4, four rectangular
volumes are created with the BLOCK, x0, x1, y0, y1, z0, z1 instruction:

! GEM LAYER 1

BLOCK, 0, 0.14/2, 0, sqrt(3)*0.14/2, 2, 2.005 ! volume 1

BLOCK, 0, 0.14/2, 0, sqrt(3)*0.14/2, 2.005, 2.055 ! volume 2

BLOCK, 0, 0.14/2, 0, sqrt(3)*0.14/2, 2.055, 2.06 ! volume 3

! TOTAL GAS GAP

BLOCK, 0, 0.14/2, 0, sqrt(3)*0.14/2, 0, 3.06 ! volume 4

When volumes are created, each volume acquires an unique ID. This number is the lowest
available number, starting from 1. As a result, the previous step generates four volumes with
IDs 1 to 4. The volumes 1 to 3 representing the metal-kapton-metal layer, are shown in Fig.
4.2(a). In the next step, the double-conical cut-out pieces are generated. With the command
WPOFFS, x0, y0, z0, the origin is moved to the given coordinates. To make the cut-out
pieces, we move the origin to the midpoint of the hole, i.e. at z = 2.03. Afterwards, two
cones and cylinders are generated with the CONE and CYL4 instructions respectively:

! Make cut-out pieces in layer 1 at x=y=0

WPOFFS, 0, 0, 2.03 ! set z offset to middle of kapton layer

CONE, outdia/2, middia/2, -kapton/2, 0, 0, 360 ! volume 5

CONE, middia/2, outdia/2, 0, kapton/2, 0, 0, 360 ! volume 6

WPOFFS, 0, 0, kapton/2 ! set z offset to end of kapton layer

CYL4, 0, 0, rim/2, ,,, metal ! volume 7

WPOFFS, 0, 0, -kapton ! set z offset to beginning of kapton layer

CYL4, 0, 0, rim/2, ,,, -metal ! volume 8

WPOFFS, 0, 0, kapton/2

WPOFFS, 0, 0, -2.03 ! return z offset to beginning

VADD, 5, 6, 7, 8 ! combine volumes to volume 9 and delete 5, 6, 7, 8

At the end, the VADD instruction is called to merge all the created volumes and create a new
merged volume. The existing volumes 5, 6,7 and 8 will be deleted and these IDs become free.
The same cones and cylinders must be made for the other GEM hole at the opposite side of
the unit cell. This will create volumes 10, where 5, 6, 7 and 8 are again becomes available.
Volume 9 and 10 are shown in Fig. 4.2(b). In the next step, volumes 9 and 10 must be
subtracted from the metal-kapton-metal layer volumes 1 to 3:

VSBV, 1, 9, , DELETE, KEEP ! 1 - 9, keep 9 and vol. 1 becomes 5

VSBV, 5, 10, , DELETE, KEEP ! 5 - 10, keep 10 and vol. 5 becomes 1

VSBV, 2, 9, , DELETE, KEEP ! 2 - 9, keep 9 and vol. 2 becomes 5

VSBV, 5, 10, , DELETE, KEEP ! 5 - 10, keep 10 and vol. 5 becomes 2

VSBV, 3, 9, , DELETE, DELETE ! 3 - 9, keep 9 and vol. 3 becomes 5

VSBV, 5, 10, , DELETE, DELETE ! 5 - 10, keep 10 and vol. 5 becomes 3

At the end of this sequence, no volume IDs are changed. The result after subtraction is
shown in Fig. 4.2(c). Analogue, the volumes 1, 2 and 3 are subtracted from the gas. This
new volume, shown in Fig. 4.3 will have ID no. 7 and the other volumes 4 to 6 are deleted.
The empty volumes are then removed and volume 7 becomes volume 4:

! Subtract the kapton and metal from the gas

VSBV, 4, 1, , KEEP, KEEP ! 4 - 1, vol. 4 becomes 5

VSBV, 5, 2, , KEEP, KEEP ! 5 - 2, vol. 5 becomes 6

VSBV, 6, 3, , KEEP, KEEP ! 6 -3, vol. 6 becomes 7

VDEL, 4

VDEL, 5

VDEL, 6

NUMCMP, VOLU ! delete empty volumes: vol. 7 becomes 4

Up to now, we have volume 1, 2 and 3 as the metal-kapton-metal layer and volume 4 as the
total gas volume with the metal-kapton-metal layer removed.
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In the next step, the metal-kapton-metal layer are glued, i.e. fusing the boundary planes. The
fusion of the metal-kapton-metal layer with the gas gap is already done with the subtraction.
Furthermore the different volumes are painted:

! Gluing the pieces metal-kapton-metal

VGLUE, 1, 2 ! becomes

VGLUE, 5, 3

! Paint the pieces

/COLOR, VOLU, RED, 4 ! gas

/COLOR, VOLU, BLACK, 1 ! metal

/COLOR, VOLU, ORANGE, 2 ! kapton

/COLOR, VOLU, BLACK, 3 ! metal

Before solving the potential, the volumes must be assigned to the materials:

! Assign materials

VSEL, S, , , 4 ! select volume 4

VATT, 2, ,1 ! assign material no. 2

VSEL, S, , , 1 ! select volume 1

VATT, 1, ,1 ! assign material no. 1

VSEL, S, , , 2 ! select volume 2

VATT, 3, ,1 ! assign material no. 3

VSEL, S, , , 3 ! select volume 3

VATT, 1, ,1 ! assign material no. 1

Furthermore, the voltage boundary conditions on the anode, cathode and GEM electrodes
must be defined. Because the GEM metal electrodes can be treated as perfect conductors,
the total surface must be an equipotential surface and all the surfaces must be assigned to
the same potential:

! Voltage boundaries on the drift and induction plane

ASEL, S, LOC, Z, 0 ! select the cathode plane

DA, ALL, VOLT, 0! cathode zero potential (i.e. grounded)

ASEL, S, LOC, Z, 3.06 ! select the anode plane

DA, ALL, VOLT, 1300 ! anode potential to 1300 V

! Voltage boundary condition on the metal (layer: 1)

VSEL, S, , , 1 ! select volume top metal

ASLV, S ! select all the surfaces of the selected volume

DA, ALL, VOLT, 400 ! set potential to 400

VSEL, S, , , 3 ! select volume top metal

ASLV, S ! select all the surfaces of the selected volume

DA, ALL, VOLT, 900 ! set potential to 900

The last step before computing the potential is applying the periodic boundary conditions.
Each plane in x and y direction of the gas and kapton volume must be assigned to such a
boundary condition, except for the metal volumes which already was defined to be a perfect
conductor and ANSYS takes this boundary condition into account.

! Symmetric boundary conditions on the sides: GAS

VSEL, S, , , 4 ! select the gas volume

ASLV, S ! select all the the surfaces of the selected volume

ASEL, R, LOC, X, 0 ! select plane at x=0

DA, ALL, SYMM ! set boundary condition for this plane

VSEL, S, , , 4 ! select the gas volume

ASLV, S! select all the the surfaces of the selected volume

ASEL, R, LOC, X, 0.14/2 ! select plane at x=0.14/2

DA, ALL, SYMM ! set boundary condition for this plane

VSEL, S, , , 4 ! select the gas volume

ASLV, S ! select all the the surfaces of the selected volume

ASEL, R, LOC, Y, 0 ! select plane at y=0

DA, ALL, SYMM ! set boundary condition for this plane

VSEL, S, , , 4 ! select the gas volume

ASLV, S ! select all the the surfaces of the selected volume

ASEL, R, LOC, Y, sqrt(3)*0.14/2 ! select plane at y=sqrt(3)*0.14/2

DA, ALL, SYMM ! set boundary condition for this plane
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! Symmetric boundary conditions on the sides: KAPTON (layer: 1)

VSEL, S, , , 2

ASLV, S

ASEL, R, LOC, X, 0

DA, ALL, SYMM

VSEL, S, , , 2

ASLV, S

ASEL, R, LOC, X, 0.14/2

DA, ALL, SYMM

VSEL, S, , , 2

ASLV, S

ASEL, R, LOC, Y, 0

DA, ALL, SYMM

VSEL, S, , , 2

ASLV, S

ASEL, R, LOC, Y, sqrt(3)*0.14/2

DA, ALL, SYMM

In a last step, the ga volume must be mesued and the field can be solved and displayed:

! Meshing options

VSEL, S,,, 1, 4

ASLV, S

MSHKEY,0

SMRT, 1

VSEL, S, , , 4

VSEL, A, , , 2

VMESH, ALL

! Solve the field

/SOLU

SOLVE

FINISH

! Display the solution

/POST1

/EFACET, 1

PLNSOL, VOLT, , 0

The nodal solutions and coordinates, the FEM elements and materials are written to text
files, which can be imported into Garfield++:

! Write the solution to files

/OUTPUT, PRNSOL, lis ! save potential solution in PRNSOL.lis

PRNSOL

/OUTPUT

/OUTPUT, NLIST, lis ! save node coordinates in NLIST.lis

NLIST,,,,COORD

/OUTPUT

/OUTPUT, ELIST, lis ! save mapping FEM elements in ELIST.lis

ELIST

/OUTPUT

/OUTPUT, MPLIST, lis ! save materials in MPLIST.lis

MPLIST

/OUTPUT
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Source code

Different programs are written in C++ based on the Garfield++ and ROOT classes. The
source code can be found on GitHub: http://github.com/jeyserma/GEMSimulations. The
different files stored in this repository are briefly explained below.

ANSYS

This directory contains the files for the ANSYS file generator which generates the necessary
files to import in ANSYS and Garfield++. The code is written in HTML/PHP and two
files are available. The first file, index.php, contains the input fields and the layout. After
processing, the dimensions and values are stored in the $GEM array which is sent to the
second file multiGEM.php. This file is the actual core and generates the ANSYS code from
the values in the $GEM array. Additional code for the calculation of the weighting fields is
also incorporated. The ANSYS code is saved to output/GEM.inp. Two additional files are
created in this folder, volumes.txt and geometry.txt, which respectively contains a list of
the ANSYS volumes and a list of the geometry and potentials. The latter file can be imported
in Garfield++ which will be discussed later on.

GEMSimulation

The main program calculates the GEM from incident muons or other particles (except pho-
tons). For each GEM needed to be calculated, a directory must be made in the includes/

folder. In this directory, the six ANSYS files as well as the volumes.txt and the geometry.txt
files must be present. The name of this directory must be given in the program and is saved in
the filename string. With the function loadGEMconfig(std::string filename, struct

GEMConfig gem), the geometry.txt is parsed and loaded into the gem struct. The GEM
dimensions and electrostatics are then easily accessible from this structure.

The information of every muon which is simulated, is stored in the particle struct. It
contains the energy, position and initial direction information as well as an array of cluster
structs. Indeed, every cluster is stored in this array, which contains all the information such
as position, energy transfer, amount of primary electrons, etc.

The information of every created electron and ion is saved in the avalancheE and avalancheI

structs respectively. All the available information is stored such as initial/final position,
energy and time of the electrons and ions.

At the end of the program, the structs are written to a ROOT file which is afterwards accessible
to analyze. For each event, the induced pulse is also written to the file, and optionally the
convoluted pulse with the VFAT3 transfer function.
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clusterDensity

The scripts in this folder calculate the cluster density λ−1 as a function of the gas mixture and
the muon energy. Although this quantity is independent of the electric field and dimensions
of the active medium, an active medium is needed by Garfield++ and a solid rectangular box
is created with an electric field of 100 V/cm in the x direction. Muons are perpendicularly
incident in the x direction with different energies. In each step, the cluster density is calcu-
lated by HEED and stored in a TGraph object. Afterwards, the cluster density is plotted as
a function of the muon energy and is saved to disk.

gasTable

The file gasTable.c calculates the gas table for a given gas mixture. Garfield++ invokes
the Magboltz program which calculates the gas table. The results are stored in a .gas file,
which can be imported in Garfield++ afterwards. However, the extraction of the Townsend,
attachment and diffusion coefficients from the .gas file is not working properly. The solution
is to extract the parameters from the program output generated by Garfield++ and Magboltz.
This program output must be written to a file, and contains all the information of the
calculation and the parameters. The parameters are extracted with the scripts available
in the plotGasTable, which does not need to be compiled but is directly processed with
ROOT. The output is a .root file which contains the five plots: the drift velocity, Townsend,
longitudinal, transverse diffusion and attachment coefficient as a function of the electric field.
Furthermore, each plot is saved to disk in pdf format.

primaryIonization

This script calculates the last cluster spread σIz where the gas mixture, initial muon energy
and incident angle must be given. It also requires the ANSYS files for the to be simulated
GEM. The cluster positions are stored in an array, which is sorted at the end of the program.
The last cluster is stored in a TGraph object from where the RMS value can be extracted.

singlePrimaryElectron

In chapter 6, the induced pulse for single primary electrons was investigated. The pulse
was obtained by using this script, where the primary electron coordinates must be manually
inserted in an array. Afterwards, the primary electrons are simultaneously simulated and all
the information as described in the GEMSimulation section is stored in a ROOT file.

gain

This program simulates the single GEMs to calculate the gain. As described in chapter 5,
the primary electrons were randomly generated in the drift region of the unit cell. Hence, no
particle and cluster structs are needed. Again, all the information of the electrons and
ions is stored avalancheE and avalancheI structs, which is saved afterwards to a ROOT file.
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Drift velocities of used gases

The following plots shows the drift velocity as a function of the electric field for the gas
mixtures used in chapter 6. Only the low electric field region is plotted in order to determine
the local maximum drift velocity, needed to optimize the time resolution.
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